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Abstract—In game theory, to achieve correlated equilibria
without a trusted mediator, the idea of replacing the mediator
with protocol execution by players is suggested. Before players
take actions in a game, players communicate with each other by
following a protocol. In that model, the concept of a punishment
strategy is defined for cases in which a player (or some players)
aborts the protocol. In this paper, we present an example of game
in which a punishment strategy does not work and suggest an
improved definition of a punishment strategy.

Index Terms—Game theory, Nash equilibrium, Correlated
equibrium, Punishment strategy.

I. I NTRODUCTION

For years, in the field of cryptography, researchers have
been concerned with applying game theory to cryptography.
This is because cryptography and game theory pertain to
the study of interactions among mutually distrusting players.
Cryptographic protocols are designed under the assumption
that some players are honest and faithfully follow the protocol,
while some players are malicious and behave arbitrarily. How-
ever in game theory, all players are considered to be rational
and behave in order to maximize their profits. In traditional
cryptography theory, if a player is corrupted, he is considered
to be dishonest and may even take an unreasonable action that
the other players can not expect. However in game theory,
almost in the same way as in the real world, it is assumed
that each player selects his action from the viewpoint of the
profit he can achieve even if he is not honest.

One of the most important ideas in game theory is equi-
librium which is the best way for all players to follow
actions. Two kinds of equilibrium were proposed. First, Nash
equilibrium (named after John Forbes Nash, who proposed it)
is a solution concept for a game involving two or more players,
in which each player is assumed to know the equilibrium
strategies of the other players and no player has anything
to gain by only changing his own strategy ([1]). The other
is a correlated equilibrium, which was proposed by Robert
Aumann [2], and is a solution concept that is more general than
the well known Nash equilibrium. The idea is that each player

chooses his action according to his observation of the value of
the single public signal. This signal is supposed to be sent by
a trusted third party called a mediator. The mediator chooses
the set of moves according to the right joint distribution and
privately informs each player of what his designated move is.
Then the next question is ”can we remove the mediator by
using some protocols?”. In the case of a two-player game, it
is well known that in the standard cryptographic models the
answer is positive, provided that the two players can interact
(see [3]). This positive result can be carried over to the game
theory model as well. Especially, we consider an extended
game, in which the players first exchange some messages
(this part is called ”cheap talk” in game theory), and then
choose their actions and execute them simultaneously as in the
original game. In [4], Dodis et al. suggested the concept of a
punishment strategy, which is a kind of rule for players not to
abort the protocols in the cheap talk phase. If a player aborts
during the cheap talk phase, the other players take actions
that cause the utility level of the aborting player to decrease.
So all players have incentives not to abort during the cheap
talk phase or to deviate from the actions in the original game.
This topic is similar to that of strong equilibrium in the terms
of an equilibrium for deviation of multiple players. However,
a strong equilibrium is an equilibrium in a game for every
subset of players where they can not increase their utilities by
deviating from an equilibrium. On the other hand, our topic is
to achieve the correlated equilibrium by using communications
among players called cheap talk and punishment strategy
when players do not follow the protocol in the cheap talk
phase. However, definitions of a punishment strategy so far
have focused only on the utilities of the punished players.
Thus punishment might also decrease the utilities of punishing
players. So under the assumption that malicious players select
their actions rationally in terms of their utilities, there is a case
in which the punishment strategy does not work, i.e, when the
punishment strategy is not better than any other strategies.
In this paper, we show an example of a game in which the
punishment strategy does not work and suggest an improved
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C (8,12) (4,3) (10,9)

Fig. 1. Two player game.

definition of the punishment strategy.

II. PRELIMINARIES

A. Game theory

In game theory we assume players take actions and have
their own utility functions that are determined by a set of
all players actions. Ann-player game,Γ is denoted asΓ =
({Ai}n

i=1, {ui}n
i=1).

Ai is a set of actions of each playeri (Pi from now on).
PlayerPi selects an actionai ∈ Ai. ui is a utility function
of Pi. N = {P1, P2, . . . Pn} is the set of all players. The
game is played by having every player takes actionai ∈ Ai

simultaneously. The payoff toPi is given byui(a), wherea
is the tuple of the action of each player, (a = (ai, . . . , an)).
Pi prefers outcomea to outcomeá iff ui(a) ≥ ui(á). We
say Pi strictly prefers outcomeα to outcomeά if ui(α) >
ui(ά) and Pi weakly prefersα to ά if ui(α) ≥ ui(ά). We
assume that information of all possible actions of the players,
A=A1 × . . .×An and utility functionsu = u1 × . . .× un are
common knowledge among the players.

We show an example of a two-player game in Fig. 1. It
can be represented in a matrix form by mapping actionsA1

to rows andA2 to columns.
The entry in the cell at rowa1 ∈ Ai and columna2 ∈

A2 contains tuple (u1,u2) indicating the payoffs toP1 and
P2, respectively, given the outcomea = (a1,a2). The example
in Fig.1 represents a game whereA1 = {A, B,C}, A2 =
{Á, B́, Ć} , and e.g.,u1(A, Á) = 11 andu2(A, Á) = 6.

B. Nash equilibrium

If players play a game andP1 knows the actions the other
players will take,P1 will select an actiona1 ∈ A1 that maxi-
mizesu1(a). If a1 is the best waya1 is called the best response
to the actions of the other players forP1. If for every player
actionai is the best response to the other actions, we call the
tuple of actions (a = (a1, ...., an) ∈ A) a Nash equilibrium.
Formally, we definea−i = (a1, .., ai−1, ai+1, .., an) and let
(ái,a−i) denote(a1, ..., ai−1, ái, ai+1, ..., an).

In a Nash equilibrium each player can not receive additional
profit by deviating from his strategy. In the example in Fig. 1,
P1 may think thatP2 selectsÁ to receive maximum payoff
12 ( (a1,a2) = (C,Á)), soP1 may select strategy A to receive
maximum payoff 11 under the assumption thatP2 will take
Á. However, if P2 thinks thatP1 will take this strategy,Ć
becomes a better strategy forP2. In this case, if players try to
maximize their payoffs, their strategies and the prediction of
strategies that the other player will take are changing except
for the point that is the best response for each player. In the

example of Fig. 1., we can see,u1(A, B́) ≤ u1(B, B́) ≥
u1(C, B́) andu2(B, Á) ≤ u2(B, B́) ≥ u2(B, Ć).

SoB is the best response to actions ofP2 andB́ is the best
response to actions ofP1. In this case, the set of actions (B, B́)
fulfills the condition of the Nash equilibriumui(ái, a−i) ≤
ui(a) for all i.

C. Correlated equilibrium

The concept of a correlated equilibrium is suggested in
[2]. This equilibrium may give a better payoff than the Nash
equilibrium for every playerPi. A correlated equilibrium can
be described by means of a joint distribution over the strategy
sets.

Let Γ = ({Ai}n
i=1, {ui}n

i=1) be ann-player game. Then,
α ∈ A1 × . . . × An denotes the set ofn-tuple strategies of
Γ. We assume the existence of external partyM called the
mediator and define a mediated version ofΓ that relies onM .

The game is now played in two stages: first, the mediator
M chooses a tuple of actions,a = (a1, . . . , an) ∈ A,
according to some known distributionD, and then hands the
recommendationai to playerPi. Secondly the players playΓ
as before by choosing any action in their respective action sets.
Players are supposed to follow the recommendation ofM , and
it is the best response for each player to realize a correlated
equilibrium. To define formally this notion, letui(ái, a−i|ai)
denote the expected utility ofPi, given that he plays actiońai

after having received recommendationai and all other players
take their recommended actionsa−i.

Definition 1: Let Γ = (Ai, ui). Distribution D ∈ ∆(A)
is a correlated equilibrium if for alla = (a1, . . . , an) in
the support ofD, all i, and all ái ∈ Ai, it holds that
ui(ái, a−i|ai) ≤ ui(a|ai).

D. Realizing correlated equilibrium with cheap talk

Consider somen-player gameΓ = (Ai,ui) in normal form,
along with a correlated equilibriumD. We then define the ex-
tensive form gameΓCT in which all players first communicate
in a cheap talk phase before the original gameΓ. Following the
game-theoretic convention, all players must take some actions
in Γ, i.e., we do not allow playerPi to abort inΓ unless this is
an action inAi. On the other hand, following the cryptographic
convention we allow players to abort during the cheap talk
phase. In case players abort during the cheap talk phase, we
must consider a new idea for each player to move properly.

III. PUNISHMENT STRATEGY

A punishment strategy was suggested as a kind of rule
to prevent players from aborting protocols in the cheap talk
phase. If a player aborts, the other players take actions that
cause the ulitity level of aborting player to decrease. So there
in no incentive for any players to abort in the cheap talk phase
and to deviate from an action in the original game. The initial
result of employing the punishment strategy was shown in [4],
which examines the case of a two-player game. The basic idea
is described hereafter. LetD be a correlated equilibrium in a
two-player gameΓ in ΓCT , the two players run a protocolΠ



to calculate (a1, a2) ← D, where playerPi receivesai as an
output. This protocol,Π, is secure-with-abort (cf.[6]), which
informally means that privacy and correctness hold. On the
other hand, fairness does not hold in particular, we assume it
is possible forP1 to receive its output even thoughP2 does
not. After runningΠ, each player takes the action it received as
the output inΠ. If P2 does not receive an output fromΠ then
it plays the minimax profile againstP1. The minimax profile
againstPi is an actiona−i ∈ A−i that minimizesmaxai∈Ai

ui(ai, a−i). Kats generalized this punishment strategy from
two players ton-players in [7]. Assume that some players
select actions following the recommended actions from the
outputs ofΠ, while some collude with each other (which is
called coalitionC) and deviate from the recommendation.C
prefersσ to σ́ only if every player inC weakly prefersσ to
σ́ and some player inC strictly prefersσ to σ́.

Definition 2: Let Γ be ann-player game with correlated
equilibrium D. A strategy vectorρ is a t-punishment strategy
with respect toD if for all C ⊆ N with | C | ≤ t, and allσ́C ,
it holds that for alli ∈ C, ui(σ́C , ρ−C) ≤ ui(D).

We introduce another definition of punishment strategy as
described in [5]. In [5], Dolev et al. considered a case withk-
immune, which means that the strategy is tolerant to at most
k Byzantine failure players. Byzantine fault tolerant means
that there is nothing that players in a setT of size at mostk
can do to give the rest of players a worse payoff, even if the
players inT can communicate with each other. For simplicity
of discussion, this paper assumes thatk=0, that is, there is no
Byzantine failure players. They also consider typeti which is
an input given to each player at the beginning. This paper does
not consider typeti, that is, there is a single type for every
player. The example in this paper can be easily extended to
cases where there are multiple types for players.

Definition 3: If Γ is an underlying game with a mediator
M , a strategy profileρ in Γ is a t-punishment strategy with
respect to a strategy profileσ in Γ if for all subsetsC ⊆ N
with | C | ≤ t, all strategiesφ in Γ with a cheap talk CT(C)
among players inC, and all playersi ∈ C, ui(Γ, σ) > ui(Γ+
CT (C), φC , ρ−C).
A remarkable difference between Definition 2 and Definition
3 is the allowing of equal utilities. In regard to this, Definition
3 requires a stronger condition. Intuitively, for any setC, even
if all players inC collude and communicate with each other
during the cheap talk, no player inC can obtain a better payoff
than the correlated equilibrium if the rest of the players select
the punishment strategy. In [7], Katz showed that if there is a
punishment strategy, in a five-players game with two malicious
players, Nash equilibrium can be implemented. In [8], In an
n-player game with t malicious players, ifn > 2t+k (k is the
number of Byzantine failure players) and there is a punishment
strategy, the Nash equilibrium can be implemented.

IV. CHEATING PLAYERS’ ACTIONS AGAINST PUNISHMENT

STRATEGY

This section describes an example in which the punishment
strategy does not prevent the players inC from aborting during

the cheap talk phase. We consider a five-player game with
two malicious players. This satisfies the conditions in both [7]
and [5] mentioned above. However, a table that shows a five-
player game is very complicated to explain, so to simplify the
example, we assume a dummy player as defined below.

Definition 4: Let δ−d be the set of actions of the players
other than the dummy player. A dummy player,Pd is a player
who satisfies the following conditions,

1.His actions do not affect the other players’ utilities.
∀σd, σ́d ∈ Ad ∀σ−d ∈ δ−d, u−d(σd, σ−d) =

u−d(σ́d, σ−d).
2.His utility is not affected by the other players’ actions

except for a punishment strategy.
His utility is as defined below,
When a punishment strategyρ−d for Pd is taken,∀σd,∈

Ad, ∀σ−d ∈ δ−d, ud(σd, σ−d) > ud(σd, ρ−d).
otherwise,
∀σ−d, ´σ−d ∈ δ−d − {ρ−d}, ∀σd ∈ Ad, ud(σd, σ−d) =

ud(σd, ´σ−d)
An example of five-player game is shown as follows.

N = {P1, P2, P3, P4, P5}, we assumeP5 is a dummy player,
so his actions do not concern us here. The number of malicious
players is 2 (t=2), and for1 ≤ i ≤ 4, Pi’s action set is
Ai = {ai

1, a
i
2, a

i
3, a

i
4}. The utility ui is shown in Fig 2. Fig. 2

consists of 4× 4 sub-tables. The utilities whenP4 takesa4
i and

P3 takesa3
j are shown in the sub-table at the i-th row and j-th

column. In each sub-table, the actions byP1 are mapped to the
rows and the actions byP2 are mapped to the columns. Each
entry is a tuple of utilities, (u1, u2, u3, u4). The correlated
equilibria for this game are (a1

3, a
2
3, a

3
3, a

4
2) and (a1

1, a
2
1, a

3
2, a

4
3).

In these cases, the utilities of the players are (5,5,5,5), as
indicated by the bold outlined boxes. Let us consider the case
when P3 and P4 abort during the cheap talk phase. After
aborting the protocol, they declare that they will take actions
a3
1 anda4

1 using the chap talk, the rest of players are supposed
to select the punishment strategy (a1

4,a2
4). As a result, the

set of actions is (a1
4,a2

4,a3
1,a4

1), and each player will receive
a utilities (u1,u2,u3,u4) = (3,3,3,3). The utilities forP3 and
P4 decrease from the correlated equilibria. So, these utilities
satisfy the definition of a punishment strategy (for allC ⊆ N
and all σ́C it holds that for alli ∈ C, ui(σ́C , ρ−C) ≤ ui(D)).
However, the important point is that the utilities ofP1 andP2

also decrease from other strategies. If they try increase their
utilities, they must give up taking the punishment strategy for
P3 andP4 and select different actions that could increase the
utilities of P3 and P4. If the players are honest, they will
select a punishment strategy even if they receive worse utilities
than the other strategies. However, in game theory, all players
are considered to be rational, so if there is a better set of
actions forP1 andP2, it is natural for them to select a better
action than the Nash equilibrium.P1 andP2 know the actions
that P3 and P4 will take and their utilities when they select
a punishment strategy. Thus, the aborting players think that
they will not execute the punishment strategy. This is called
an ”empty threat” [4]



In this example, given thatP3 and P4 take a3
1 and a4

1 (in
this case, we use the table at the upper left), we repeat iterative
elimination of strictly dominated strategies forP1 and P2.
From the viewpoint ofP2, strategiesa2

3 anda2
4 are dominated

by a2
2, so we can remove the possiblity thatP2 takesa2

3 and
a2
4. On the other hand, from the viewpoint ofP1, strategiesa1

1,
a1
3 anda1

4 are dominated bya1
2 anda2

1 are dominated bya2
2.

Then, (a1
2,a2

2) is found to be the dominant strategy forP1 and
P2. Note that bothP1 andP2 can independently calculate the
strategy by itself. So all players try to receive the maximum
profits under the assumption that all players are rational, and
(a1

2,a2
2,a3

1,a4
1) is the equilibrium for the all players. (As a result,

they will receive utilities (4,4,5,6)). In this case, even ifP3

andP4 abort protocols during the cheap talk phase, the other
players will not punish aborting players, rather they will help
aborting players to receive more payoff to get more payoff than
that received from the punishment strategy. This is indicated by
as an arrow in Fig. 2. The players will select the set of actions
(a1

2,a2
2,a3

1,a4
1), not the punishment strategy (a1

4,a2
4,a3

1,a4
1).

V. NEW DEFINITION OF PUNISHMENT STRATEGY

The reason a punishment strategy does not work is that
definitions in [7] and [5] do not care about utilities of
punishing players. In [4], it was shown that for two-player
games, a min-max strategy may be an ”empty threat” without
the proper setting. For multiple player games, the above
example shows that a punishment strategy does not work. To
avoid these cases, we suggest a new definition of a punishment
strategy that considers punishing players’ utilities.

Definition 5: Let Γ be ann-player game with correlated
equilibrium D. A strategy vectorρ is a t-punishment strategy
if for any strategy vectoŕρ with respect toD and for all
i ∈ C ⊆ N, j /∈ C with | C | ≤ t, all σ́C it holds that
ui(σ́C , ρ−C) ≤ ui(D) anduj(σ́C , ρ́−C) ≤ uj(σ́C , ρ−C),
where σ́C satisfies the conditionui(D) < ui(σ́C , ρ′′−C) for
some strategy vectorρ′′−C .
We add the idea of punishing player (punisher) utilities to
the original definition of the punishment strategy to avoid the
case in which the utilities of the punishers decrease when they
punish the aborting players. We also add the condition forσ́C

to avoid the the case where punishment strategy becomes a
dominant strategy for punishers. A punishment strategy is the
dominant strategy for punishers only when some players abort
in the cheap talk phase.

Theorem 1:Let Γ be an n-player game with correlated
equilibrium D and the punishment strategy as defined above.
Correlated equilibria can be implemented even in the presence
of at most t malicious players under the condition thatn > 2t.

Proof When some playersC abort during the cheap
phase, the other players try to punish them using the pun-
ishment strategy. Since all punishing players’ utilities for the
punishment strategy are not worse than other strategies, they
will select the punishment strategy. Malicious players know
that the rest of the players will choose the punishment strategy
whenever they abort the protocol, and they are not supposed
to deviate from the protocol.

VI. CONCLUSION

We showed that there are cases when a punishment strategy
does not work. We suggested a new definition of a punishment
strategy to avoid these cases. As future directions of investiga-
tion, we are exploring cases in different settings and searching
for better definitions for rational multi party protocols.
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Fig. 2. An example of game that a punishment strategy does not work.
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Fig. 3. An example of game that satisfies the new definition of punishment strategy.


