
28
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.1 JANUARY 2006

PAPER Special Section on Cryptography and Information Security

A Universally Composable Secure Channel Based on the
KEM-DEM Framework∗

Waka NAGAO†a), Student Member, Yoshifumi MANABE†,††b), and Tatsuaki OKAMOTO†,†††c), Members

SUMMARY As part of ISO standards on public-key encryption, Shoup
introduced the framework of KEM (Key Encapsulation Mechanism), and
DEM (Data Encapsulation Mechanism), for formalizing and realizing one-
directional hybrid encryption; KEM is a formalization of asymmetric en-
cryption specified for key distribution, which DEM is a formalization of
symmetric encryption. This paper investigates a more general hybrid pro-
tocol, secure channel, that uses KEM and DEM, while KEM supports dis-
tribution of a session key and DEM, along with the session key, is used
for multiple bi-directional encrypted transactions in a session. This pa-
per shows that KEM, which is semantically secure against adaptively cho-
sen ciphertext attacks (IND-CCA2), and DEM, which is semantically se-
cure against adaptively chosen plaintext/ciphertext attacks (IND-P2-C2),
along with secure signatures and ideal certification authority are sufficient
to realize a universally composable (UC) secure channel. To obtain the
main result, this paper also shows several equivalence results: UC KEM,
IND-CCA2 KEM and NM-CCA2 (non-malleable against CCA2) KEM are
equivalent, and UC DEM, IND-P2-C2 DEM and NM-P2-C2 DEM are
equivalent.
key words: universally composable, KEM, DEM, ISO, IND-CCA2, NM-
CCA2

1. Introduction

1.1 Background

Shoup proposed the Key Encapsulation Mechanism (KEM)
for key distribution in public-key cryptosystems, as part of
ISO standards on public-key encryption [11].

The difference between KEM and public-key encryp-
tion (PKE) is as follows: PKE’s encryption procedure, on
input plaintext M and receiver R’s public-key PKR, out-
puts ciphertext C, while KEM’s encryption procedure, on
input receiver R’s public-key PKR, outputs ciphertext C and
key K, where C is sent to R, and K is kept secret inside
the sender, and employed in the subsequent process of data
encryption. PKE’s decryption procedure, on input C and

Manuscript received March 14, 2005.
Final manuscript received June 21, 2005.
†The authors are with the Graduate School of Informatics,

Kyoto University, Kyoto-shi, 606-8501 Japan.
††The author is with the NTT Cyber Space Laboratries, NTT

Corporation, Yokosuka-shi, 239-0847 Japan.
†††The author is with the NTT Information Sharing Platform

Laboratories, NTT Corporation, Yokosuka-shi, 239-0847 Japan.
∗A preliminary version of this paper was presented at The-

ory of Cryptography Conference (TCC), LNCS, vol.3378, pp.426–
444, February 2005.

a) E-mail: w-nagao@lab7.kuis.kyoto-u.ac.jp
b) E-mail: manabe.yoshifumi@lab.ntt.co.jp
c) E-mail: okamoto.tatsuaki@lab.ntt.co.jp

DOI: 10.1093/ietfec/e89–a.1.28

secret-key S KR, outputs plaintext M, while KEM’s decryp-
tion procedure, on input C and secret-key S KR, outputs key
K. Although KEM is a mechanism for key distribution and
the applications of KEM are not specified, the most typi-
cal application is hybrid encryption, where a key shared via
KEM is employed for symmetric-key encryption. Shoup
also formulated symmetric-key encryption as the Data En-
capsulation Mechanism (DEM) [11].

Shoup defined the security notion, “indistinguishable
(semantically secure) against adaptively chosen-ciphertext
attacks,” for KEM and DEM, respectively, (we call them
IND-CCA2-KEM and IND-CCA2-DEM, respectively), and
showed that hybrid encryption (HPKE) implemented by
combining KEM with IND-CCA2-KEM and DEM with
IND-CCA2-DEM is a PKE with IND-CCA2-PKE [7],
[11]∗∗.

Since the KEM-DEM hybrid encryption specified by
Shoup is one-directional (or equivalent to public-key en-
cryption in functionality), it is applicable for secure email
and single direction transactions. However, in many secure
protocols (e.g., SSL, IPSec, SSH), asymmetric and symmet-
ric encryption schemes are employed in a different man-
ner as a secure channel such that an asymmetric encryp-
tion scheme is used for distribution of a session key while a
symmetric encryption scheme with the session key is used
for the many bi-directional encrypted transactions needed in
a session.

The KEM-DEM framework can be modified to yield
the secure channel; KEM can be used for key of a ses-
sion key distribution and DEM with the session key is used
for secure communications in the session. Since the KEM-
DEM framework will be standardized in a near future, it
seems a promising to employ the above-mentioned modified
KEM-DEM framework to realize a secure channel. How-
ever, no research has been done on the security require-
ments of KEM and DEM such that a secure channel based
on the modified KEM-DEM framework can guarantee a suf-
ficient level of security, although KEM with IND-CCA2-
KEM and DEM with IND-CCA2-DEM have been shown
to be sufficient for an IND-CCA2-PKE single-directional
KEM-DEM-hybrid scheme [7], [11]. That is, we have the

∗∗Originally, the notion of IND-CCA2 was defined for PKE.
The way of providing analogous definitions and to use the same
name, “indistinguishable (semantically secure) against adaptively
chosen-ciphertext attacks,” for KEM and DEM follows that of [7].
In this paper, however, we explicitly distinguish them by the terms,
IND-CCA2-PKE, IND-CCA2-KEM, and IND-CCA2-DEM.

Copyright c© 2006 The Institute of Electronics, Information and Communication Engineers

NAGAO et al.: A UNIVERSALLY COMPOSABLE SECURE CHANNEL BASED ON THE KEM-DEM FRAMEWORK
29

following problems:

• What are the security requirements of KEM and DEM
to construct a secure channel?

• How to define the satisfactory level of security of a
secure channel? (since it cannot be characterized by
just public-key encryption, and indeed requires a more
complicated security definition.)

1.2 Our Results

This paper answers the above-mentioned problems:

• This paper shows that KEM with IND-CCA2-KEM
and DEM with IND-P2-C2-DEM along with secure
signatures and ideal certification authority are sufficient
to realize a universally composable secure channel.

• We follow the definition of a universally composable
secure channel as set by Canetti and Krawczyk [5].
There are two major merits in using the universal com-
posability paradigm. First, the paradigm provides a
clear and unified (or standard) approach to defining the
security of any cryptographic functionality including
a secure channel. Second, our concrete construction
of a secure channel based on the KEM-DEM frame-
work guarantees not only stand-alone security but also
universal composable security. Since a secure proto-
col like SSL, IPSec and SSH is often employed as an
element of a large-scale security system, the universal
composability of a secure protocol is especially impor-
tant.

In order to obtain the above-mentioned main result, we
first show that UC KEM, IND-CCA2 KEM and NM-CCA2
KEM are equivalent, and that UC DEM, IND-P2-C2 DEM
and NM-P2-C2 DEM are equivalent. We then show that
UC KEM and UC KEM as well as UC signatures and ideal
certification authority are sufficient for realizing a UC secure
channel.

Although this paper considers only single sessions, the
same result is obtained for the multi-session case is obtained
automatically via the UC with joint state (JUC) [6].

1.3 Related Works

Canetti and Krawczyk [5] showed a UC secure channel pro-
tocol consisting of an authenticated Diffie-Hellman key ex-
change scheme, message authentication code, and pseudo-
random generator. Accordingly, their results are specific to
their construction. Our result is based on the general no-
tions of KEM, DEM and signatures, but so are not restricted
to any specific scheme.

The equivalence of UC PKE and IND-CCA2 PKE was
suggested by Canetti [3], and the equivalence of NM-CCA2
PKE and IND-CCA2 PKE was shown by Bellare et al. [1],
[2]. The relationships among several security notions of
symmetric encryptions were investigated by Katz and Yung

[9]. However, no results have been reported on the equiv-
alence among UC KEM, IND-CCA2 KEM and NM-CCA2
KEM, and among UC DEM, IND-CCA2 DEM and NM-
CCA2 DEM.

2. The KEM-DEM Framework

We describe probabilistic algorithms and experiments with
standard notations and conventions. For probabilistic algo-
rithm A, A(x1, x2, · · · ; r) is the result of running A with in-
puts of x1, x2, · · · and coins r. We let y ← A(x1, x2, · · ·)
denote the experiment of picking r at random and letting y
equal the output of A(x1, x2, · · · ; r). If S is a finite set, then
x ← S denotes the experiment of assigning to x an element
uniformly chosen from S . If α is neither an algorithm nor a
set, then x ← α indicates that we assign α to x. We say that
y can be output by A(x1, x2, · · ·) if there is some r such that
A(x1, x2, · · · ; r) = y.

2.1 Key Encapsulation Mechanism

Formally, key encapsulation mechanism KEM is given by
the triple of algorithms KEM.KeyGen(), KEM.Encrypt
(pk, options) and KEM.Decrypt(sk,C0), where:

1. KEM.KeyGen(), the key generation algorithm, is a
polynomial time and probabilistic algorithm that takes
security parameter k ∈ N (provided in unary) and re-
turns a pair (pk, sk) of matching public and secret keys.

2. KEM.Encrypt(pk, options), the encryption algorithm,
is a polynomial time and probabilistic algorithm that
takes as input public key pk, along with an optional
options argument, and outputs a key/ciphertext pair
(K,C0). The role of options is analogous to that in
public-key encryption.

3. KEM.Decrypt(sk,C0), the decryption algorithm, is a
polynomial time and deterministic algorithm that takes
as input secret key sk and ciphertext C0, and outputs
key K or special symbol ⊥ (⊥ implies that the cipher-
text was invalid).

We require that for all (pk, sk) output by KEM.Key-
Gen(1k), and for all C0 output by KEM.Encrypt(pk, opt-
ions), KEM.Decrypt(sk,C0) = K (|K| is denoted by
KEM.OutputKeyLen — the length of the key output by
KEM.Encrypt and KEM.Decrypt). Function ε : N → R
is negligible if for every constant c ≥ 0 there exists integer
kc such that ε(k) ≤ k−c for all k ≥ kc. We write vectors in
boldface, as in x. We also denote the number of compo-
nents in x by |x|, and the i-th component by x[i], so that x
= (x[1],· · · ,x[|x|]). Additionally, we denote a component of
a vector as x ∈ x or x � x, which mean, respectively, that
x is in or is not in the set { x[i] : 1 ≤ i ≤ |x|}. Such no-
tions provide convenient descriptions. For example, we can
simply write x ← KEM.Decrypt(y) as the shorthand form
of 1 ≤ i ≤ | y | do x[i] ← KEM.Decrypt(y[i]). We will
consider relations of arity t where t is polynomial in secu-
rity parameter k. Rather than writing R(x1, · · · , xt), we write

30
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.1 JANUARY 2006

R(x, x), meaning the first argument is special and the rest are
bunched into vector x with |x| = t − 1.

2.1.1 Attack Types of KEM

We state the following three attack types of KEM. First, we
state CPA (Chosen Plaintext Attack). In CPA, an adversary
is allowed to access only the encryption oracle not the de-
cryption oracle. Second, in CCA1 (Chosen Ciphertext At-
tack), an adversary is allowed to access encryption and de-
cryption oracles. However, the adversary cannot access the
decryption oracle after getting the target ciphertext. Third,
in CCA2 (Adaptive Chosen Ciphertext Attack), an adver-
sary is allowed to access encryption and decryption oracles
even after the adversary gets the target ciphertext.

2.1.2 Indistinguishability of KEM

We use IND-ATK-KEM to describe the security notion of
indistinguishability for KEM against ATK ∈ {CPA, CCA1,
CCA2} [11]. We redescribe the security notion of IND-
CCA2-KEM by considering the following attack scenario.
First, the key generation algorithm is run to generate the
public and private key for the protocol. The adversary can
get the public key, but not the private key. Second, the ad-
versary generates some queries of plaintext/ciphertexts and
sends the queries to the encryption/decryption oracles. Each
oracle encrypts/decrypts the queries and returns the results
of ciphertext/plaintexts to the adversary. If the algorithm
fails, this result is informed to the adversary, and the attack
continues. Third, the encryption oracle does the following:

1. Runs the encryption algorithm, generating pair (K∗,
C∗0).

2. Generates a random string K̃ of length KEM.Output-
KeyLen.

3. Chooses b ∈ {0, 1} at random.
4. If b = 0, outputs (K∗, C∗0), otherwise outputs (K̃, C∗0).

Fourth, the adversary generates plaintext/ciphertexts to
get information from each oracle where the ciphertext C0 �
C∗0. Finally, the adversary outputs b̂ ∈ {0, 1}.

Let ΠKEM = (KEM.KeyGen, KEM.Encrypt, KEM.
Decrypt) be an encryption protocol and let A be an adver-
sary. The advantage of ΠKEM for adversary A, AdvIND-ATK

A,ΠKEM
is

defined as follows:

AdvIND-ATK
A,ΠKEM

(k) =
∣∣∣∣∣Pr[b̂ = b] − 1

2

∣∣∣∣∣ .

ΠKEM is secure in the sense of IND-ATK if
AdvIND-ATK

A,ΠKEM
(k) is negligible for any PPT adversary A.

2.1.3 Non-malleability of KEM

We provide a formal definition of non-malleability for KEM
in Fig. 1 following [1], which we call NM-KEM. We also
use NM-ATK-KEM to describe the security notion of non-
malleability for KEM against ATK ∈ {CPA, CCA1, CCA2}.

AdvNM-ATK
A,ΠKEM

(k) ≡ Pr[ExptNM-ATK
A,ΠKEM

(k) = 1]

−Pr[Ẽxpt
NM-ATK
A,ΠKEM

(k) = 1]
where
ExptNM-ATK

A,ΠKEM
(k)

(pk, sk) ← KEM.KeyGen(1k)

(K , s) ← AO1
1 (pk)

(K∗,C∗0) ← KEM.Encrypt(pk) ∧ K∗∈K
(R,C0) ← AO2

2 (s,C∗0)

K ← KEM.Decrypt(sk,C0)

return 1 iff (C∗0 � C0) ∧ R(K∗, K)

Ẽxpt
NM-ATK
A,ΠKEM

(k)

(pk, sk) ← KEM.KeyGen(1k)

(K , s) ← AO1
1 (pk)

K∗ ← K
(K̃, C̃0) ← KEM.Encrypt(pk) ∧ K̃∈K
(R, C̃0) ← AO2

2 (s, C̃0)

K̃ ← KEM.Decrypt(sk, C̃0)

return 1 iff (C̃0 � C̃0) ∧ R(K∗, K̃)

and
If ATK = CPA then O1 = ε and O2 = ε.
If ATK = CCA1 then O1 = KEM.Decrypt(sk, ·) and O2 = ε.
If ATK = CCA2 then O1 = KEM.Decrypt(sk, ·) and
O2 = KEM.Decrypt(sk, ·).

Fig. 1 NM-KEM definition.

Let A = (A1, A2) be an adversary. (We state two more defi-
nitions in [10].)
ΠKEM is secure in the sense of NM-ATK-KEM, where

ATK∈ {CPA, CCA1, CCA2}, if for every polynomial p(k), A
runs in p(k), outputs valid key space K in p(k), and outputs
relation R computable in p(k), and AdvNM-ATK

A,ΠKEM
(k) is negli-

gible. We insist that the adversary is unsuccessful if some
ciphertext C0[i] does not have a valid decryption (that is,
⊥ ∈ K).

2.1.4 Equivalence Results

We can obtain the equivalence of all three formal defini-
tions and the following Theorem 1 between IND-CCA2-
KEM and NM-CCA2-KEM. (For more details and proofs
see [10].)

Theorem 1. (IND-CCA2-KEM⇔ NM-CCA2-KEM)
If encryption scheme ΠKEM is secure in the sense of IND-
CCA2-KEM, thenΠKEM is secure in the sense of NM-CCA2-
KEM.

2.2 Data Encapsulation Mechanism

Formally, data encapsulation mechanism DEM is given by a
pair of algorithms DEM.Encrypt(K, M) and DEM.Decrypt
(K,C), where:

NAGAO et al.: A UNIVERSALLY COMPOSABLE SECURE CHANNEL BASED ON THE KEM-DEM FRAMEWORK
31

1. The encryption algorithm DEM.Encrypt(K, M) takes
as input secret key K and plaintext M. It outputs cipher-
text C. Here, K, M and C are byte strings, and M may
have arbitrary length, and K’s length is DEM.KeyLen.

2. The decryption algorithm DEM.Decrypt(K, C) takes
as input secret key K and ciphertext C. It outputs plain-
text M.

DEM must satisfy the soundness, DEM.Decrypt(K,
DEM.Encrypt(K, M)) = M.

2.2.1 Attack Types of DEM

We introduce the following six attack types of DEM. We
first consider the three attack types that involve for access
to the encryption oracle. First, we state P0, that is an attack
type with no access to the encryption oracle by the adver-
sary. Second, we state P1 (Chosen Plaintext Attack). P1 is
an attack type with access to the encryption oracle. How-
ever, the adversary cannot access the encryption oracle after
getting the target ciphertext. Third, we state P2 (Adaptive
Chosen Plaintext Attack). In this type, an adversary can ac-
cess the encryption oracle even if after the adversary gets
the target ciphertext. The last three attack types involve ac-
cess to the decryption oracle. C0 is an attack type with no
access to the decryption oracle by the adversary. C1 (Cho-
sen Ciphertext Attack) is an attack type with access to the
decryption oracle. However, the adversary cannot access
the decryption oracle after getting the target ciphertext. C2
(Adaptive Chosen Ciphertext Attack), an adversary can ac-
cess to the decryption oracle even after the adversary gets
the target ciphertext.

2.2.2 Indistinguishability of DEM

We state a formal definition of indistinguishability for DEM
in Fig. 2 following [9], which we call IND-DEM. We also
use IND-PX-CY-DEM to describe the security notion of in-
distinguishability for DEM against X,Y ∈ {0, 1, 2}.

AdvIND-PX-CY
A,ΠDEM

(k) ≡ 2 · Pr[ExptIND-PX-CY
A,ΠDEM

(k)] − 1

where ExptIND-PX-CY
A,ΠDEM

(k)

K←{0, 1}k; (x0, x1, s)←A
O1 ,O

′
1

1 (1k); b←
{0, 1}; y←DEM.Encrypt(K, xb);

g←A
O2 ,O

′
2

2 (1k , s, y); return 1 iff g = b

and
If X = 0 then O1(·) = ε and O2(·) = ε.
If X = 1 then O1(·) = DEM.Encrypt(K, ·) and O2(·) = ε.
If X = 2 then O1(·) = DEM.Encrypt(K, ·) and
O2(·) = DEM.Encrypt(K, ·).
If Y = 0 then O′1(·) = ε and O′2(·) = ε.
If Y = 1 then O′1(·) = DEM.Decrypt(K, ·) and O′2(·) = ε.
If Y = 2 then O′1(·) = DEM.Decrypt(K, ·) and
O′2(·) = DEM.Decrypt(K, ·).

Fig. 2 IND-DEM definition.

Let ΠDEM = (DEM.Encrypt,DEM.Decrypt) be an en-
cryption scheme over message space M and let A = (A1, A2)
be an adversary. We insist that A1(1k) outputs (x0, x1) ∈ M
with |x0| = |x1|, where k is the security parameter. Further-
more, when Y = 2, we insist that A2 does not ask for the
decryption of challenge ciphertext y.
ΠDEM is secure in the sense of IND-PX-CY for X,Y ∈

{0, 1, 2} if AdvIND-PX-CY
A,ΠDEM

(·) is negligible for any PPT adver-
sary A.

2.2.3 Non-malleability of DEM

We state a formal definition of non-malleability for DEM
in Fig. 3 following Bellare [2] and Katz [9], which we call
NM-DEM. We also use NM-PX-CY-DEM to describe the
security notion of non-malleability for DEM for X,Y ∈ {0,
1, 2}.

In Fig. 3, M is a distribution over messages and R is
some relation and k is a security parameter. We require that
|x| = |x′| for all x, x′ in the support of M. We also require
that the vector of ciphertexts y output by A2 should be non-
empty. Furthermore, when Y = 2, we insist that A2 does not
ask for the decryption of y.
ΠDEM is secure in the sense of NM-PX-CY for X,Y ∈

{0, 1, 2} if AdvNM-PX-CY
A,ΠDEM

(k) is negligible for any PPT adver-
sary A.

We note that the two above security notions of DEM
yield Theorem 2. (The proof is shown in [10]).

Theorem 2. (NM-P2-C2-DEM⇔ IND-P2-C2-DEM)
Encryption scheme ΠDEM is secure in the sense of NM-P2-
C2 if and only if ΠDEM is secure in the sense of IND-P2-C2.

AdvNM-PX-CY
A,ΠDEM

(k) ≡ Pr[ExptNM-PX-CY
A,ΠDEM

(k) = 1]

−Pr[Ẽxpt
NM-PX-CY
A,ΠDEM

(k) = 1]
where

ExptNM-PX-CY
A,ΠDEM

(k) Ẽxpt
NM-PX-CY
A,ΠDEM

(k)

K←{0, 1}k K←{0, 1}k
(M, s)←A

O1 ,O
′
1

1 (1k) (M, s)←A
O1 ,O

′
1

1
x←M (x, x̃)←M
y←DEM.Encrypt(K, x) ỹ←DEM.Encrypt(K, x̃)

(R, y)←A
O2 ,O

′
2

2 (s, y) (R, ỹ)←A
O2 ,O

′
2

2 (s, ỹ)
x←DEM.Decrypt(K, y) x̃←DEM.Decrypt(K, ỹ)
return 1 iff (y � y) ∧ R(x, x) return 1 iff (̃y � ỹ) ∧ R(x, x̃)

and
If X = 0 then O1(·) = ε and O2(·) = ε.
If X = 1 then O1(·) = DEM.Encrypt(K, ·) and O2(·) = ε.
If X = 2 then O1(·) = DEM.Encrypt(K, ·) and
O2(·) = DEM.Encrypt(K, ·).
If Y = 0 then O′1(·) = ε and O′2(·) = ε.
If Y = 1 then O′1(·) = DEM.Decrypt(K, ·) and O′2(·) = ε.
If Y = 2 then O′1(·) = DEM.Decrypt(K, ·) and
O′2(·) = DEM.Decrypt(K, ·).

Fig. 3 NM-DEM definition.

32
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.1 JANUARY 2006

3. Universally Composable KEM Is Equivalent to IND-
CCA2 KEM

3.1 The Key Encryption Mechanism Functionality FKEM

We define the key encapsulation mechanism (KEM) func-
tionality FKEM, in Fig. 4. FKEM is the functionality of KEM-
key-generation, KEM-encryption and KEM-decryption.
Here note that no functionality of data transmission between
parties in FKEM is considered.

Functionality FKEM

FKEM proceeds as follows, running with parties P1, . . . , Pn

and an adversary S .

KEM.KeyGen

In the first activation, expect to receive (KEM.KeyGen, sid)
from some party P j. Then,

1. Send (KEM.KeyGen, sid) to S .
2. Upon receiving (KEM Key, sid, pk) from S , send

(KEM Key, sid, pk) to P j.
3. If this is the first activation then record the pair (P j,

pk), otherwise pk is discarded.

KEM.Encrypt

Upon receiving (KEM.Encrypt, sid, pk′) from some party
Pi, proceed as follows:

• Check the memory, if pk′ = pk, and if P j is not cor-
rupted, then proceed as follows:

1. Send (KEM.Encrypt, sid, pk′) to S .
2. Receive (Encrypted Shared Key, sid, pk′, C0)

from S .
3. If C0 is stored in memory then halt.

4. Choose Shared Key K
R←− {0, 1}∗ randomly.

5. Send (Encrypted Shared Key, sid, pk′, K, C0)
to Pi.

6. Store the pair (K, C0) in memory.

• Otherwise (includes pk′ � pk or pk is not yet
recorded, or P j is corrupted),

1. Send (KEM.Encrypt with Key, sid, pk′) to S .
2. Receive (Encrypted Shared Key, sid, pk′, K,

C0) from S .
3. Send (Encrypted Shared Key, sid, pk′, K, C0)

to Pi.

KEM.Decrypt

Upon receiving (KEM.Decrypt, sid, C′0) from P j (and P j

only), hand (KEM.Decrypt, sid, C′0) to S . Upon receiving
(Shared Key, sid, K′) from S , proceed as follows:

1. If a pair (K, C′0) exists in memory, send (Shared Key,
sid, K) to P j.

2. Otherwise, send (Shared Key, sid, K′) to P j.

Fig. 4 The key encapsulation mechanism functionality.

3.2 UC KEM Is Equivalent to IND-CCA2 KEM

Let KEM= (KEM.KeyGen,KEM.Encrypt,KEM.De-
crypt) be a key encapsulation mechanism. Consider the fol-
lowing transformation from KEM to protocol πKEM that is
constructed for realizing FKEM :

1. Upon input (KEM.KeyGen, sid) within some party Pj,
Pj obtains public key pk and secret key sk by running
the algorithm KEM.KeyGen(), and then outputs (KEM
Key, sid, pk).

2. Upon input (KEM.Encrypt, sid, pk′) within some party
Pi, Pi obtains pair (K∗,C0

∗) of a key and a ciphertext by
running the algorithm KEM.Encrypt(pk′) and outputs
(Encrypted Shared Key, sid, pk′, K∗,C0

∗). (Note that
it does not necessarily hold that pk′= pk).

3. Upon input (KEM.Decrypt, sid, C0
∗) within Pj, Pj ob-

tains K∗ = KEM.Decrypt(sk, C0
∗) and outputs (Shared

Key, sid, K∗).

Theorem 3. πKEM securely realizes FKEM with respect to
non-adaptive adversaries if and only if KEM is indistin-
guishable against adaptive chosen ciphertext attacks (IND-
CCA2 KEM).

Proof. (“only if” part) Because NM-CCA2-KEM equals
IND-CCA2-KEM by Theorem 1, we prove that if πKEM is
not NM-CCA2-KEM secure, then πKEM does not securely
realize FKEM. In more detail, we prove that we can con-
struct an environment Z and a real life adversary A such
that for any ideal process adversary (simulator) S , Z can
tell whether it is interacting with A and πKEM or with S in
the ideal process for FKEM by using adversary G that breaks
NM-CCA2-KEM.

Z proceeds as follows:

1. Activates key receiver Pj with (KEM.KeyGen, sid),
and obtains pk.

2. Activates Pi with (KEM.Encrypt, sid, pk), and obtains
(K∗,C0

∗).
3. Activates G with pk and C0

∗, obtains (R, C0), where R
is some relation.

4. Activates Pj with (KEM.Decrypt, sid, C0[i]) for each
i, and obtains K′[i].

5. Returns 1 iff R(K∗, K′).

When Z interacts with A and πKEM, Z obtains corre-
sponding pair (K∗,C0

∗) in Step 2. In this case, Z returns 1
in Step 5. On the other hand, when Z interacts with S in the
ideal process for FKEM, Z obtains non-corresponding pair

(K�,C0
∗) in Step 2, where K� R←− {0, 1}∗ by FKEM and C0

∗
is generated by S . For C0

∗, G successfully obtains (R, C0).
However Z cannot output 1 in Step 5 because there is no re-
lation R(K�, K′).

(“if” part) We show that if πKEM does not securely re-
alize FKEM, then πKEM is not IND-CCA2-KEM. In more de-
tail, we assume that there is an adversary A such that for any

NAGAO et al.: A UNIVERSALLY COMPOSABLE SECURE CHANNEL BASED ON THE KEM-DEM FRAMEWORK
33

simulator S , there is an environment Z that can distinguish
with non-negligible probability whether it is interacting with
S in the ideal process for FKEM or with parties running πKEM

and adversary A in the real-life world. We then prove that
πKEM is not IND-CCA2-secure by using the distinguishable
environment Z.

We will show that Z can distinguish only when receiver
Pj is not corrupted. We discuss all the cases as follows.

(Case 1: Receiver Pj is corrupted.) In this case, we
can make simulator S such that the environment Z cannot
distinguish the real life world from the ideal process world.
Once A corrupts Pj, simulator S corrupts dummy party P̃ j.
However, receiver Pi is not corrupted, that is, Pi is honest.
Simulator S proceeds as follows:

1. When S receives (KEM.KeyGen, sid), it obtains (pk,
sk) by running KEM.KeyGen(), and returns pk to
FKEM.

2. When S receives (KEM.Encrypt with Key, sid, pk), it
generates corresponding pair (K, C0) and returns C0 to
FKEM.

3. When S receives (KEM.Decrypt, sid, C0), it generates
key K and returns K to FKEM.

In this case, Z cannot distinguish the real world from the
ideal world because S can reconstruct by using the simu-
lated copy of A. Note that, A can stop protocol πKEM. Even
if this situation happens, Z cannot distinguish the real world
from the ideal world, because S can also stop the protocol.

(Case 2: Pj is not corrupted.) We look at the generated
key and ciphertext by Pi in each world.

• In the real life world, πKEM runs among the honest par-
ties, Pi generates corresponding pair (K∗,C∗0) by run-
ning algorithm KEM.Encrypt(pk).

• In the ideal process world, when P̃i sends (KEM.Encr-
ypt, sid, pk) to FKEM, FKEM obtains C0 from S , and

FKEM chooses shared key K
R←− {0, 1}∗ at random. It

then sends (Encrypted Shared Key, sid, pk, K, C0) to
Pi.

It is easily seen that C0 is not concerned with key K
(because FKEM randomly generates the key K). In the real
world, Z obtains the corresponding pair (K∗,C0

∗). How-
ever, in the ideal world, Z obtains the non-corresponding
pair (K,C0). Consequently, we can construct environment Z
that can distinguish the real world from the ideal world.

Recall the formal settings, there are three types of mes-
sages between Z and A. That is, Z sends A a message either
to corrupt parties, or to report on messages sending, or to
deliver some message. In this protocol, no party corruption
occurs during execution since we consider non-adaptive ad-
versaries. Furthermore, parties don’t send messages to each
other. Therefore, there are no requests to report on or deliver
messages. Thus, the only way that S can affect the output
of Z is communication via FKEM. As a result, S proceeds as
follows:

1. When S receives message (KEM.KeyGen, sid)

from FKEM, it runs the key generation algorithm
KEM.KeyGen(), obtains public key pk and secret key
sk, and returns pk to FKEM.

2. When S receives message (KEM.Encrypt, sid, pk)
from FKEM, it generates C0 from the output of the al-
gorithm KEM.Encrypt(pk), and returns C0 to FKEM.

3. When S receives message (KEM.Encrypt with Key,
sid, pk) from FKEM, it generates key (K, C0) =
KEM.Encrypt(pk), and returns (K, C0) to FKEM.

4. When S receives message (KEM.Decrypt, sid, C0)
from FKEM, it obtains K = KEM.Decrypt(sk,C0) and
returns K to FKEM.

We assume that there is an environment Z that can dis-
tinguish the interaction in the real life world from that in
the ideal process world. We prove that we can construct an
adversary F that breaks IND-CCA2-KEM by using the dis-
tinguishable environment Z. Precisely, for some value of
security parameter z for Z, we assume that there is an envi-
ronment Z such that IDEALF,S ,Z(z) - REALπKEM ,A,Z(z) > σ,
we then show that F correctly guesses bit b with probability
1
2 +

σ
2l in the CCA2 game, where l is the total number of

times the encryption oracle is involved.
F is given public key pk, and is allowed to query the

decryption oracle and encryption oracle. First, F chooses a

number h
R←− {1, . . . , l} at random. Second, F simulates Z on

the following simulated interaction with a system running
πKEM. Let Ki and C0i denote the i-th key and ciphertext that
Z asks to be encrypted in this simulation, respectively.

1. When Z activates some party Pj with (KEM.KeyGen,
sid), F lets Pj output the value pk from F′s input.

2. For the first h − 1 times that Z asks some party Pi to
generate shared key Ki, F lets Pi return (Ki, C0i) by
using algorithm (Ki, C0i) = KEM.Encrypt(pk).

3. The h-th time that Z asks to generate key Kh, F queries
its encryption oracle with pk, and obtains correspond-
ing pair X= (Kh, C0h) or non-corresponding pair X =
(K′h, C0h) from the encryption oracle. Accordingly, F
hands X to Z as the test pair.

4. For the remaining l− h times that Z asks Pi to generate

shared key Ki, F lets Pi return (Ki, C0i), where Ki
R←−

{0, 1}∗ randomly and C0 from the output of algorithm
KEM.Encrypt(pk).

5. Whenever Z activates decryptor Pj with (KEM.Dec-
rypt, sid, C0), where C0 = C0i for some i, F lets Pi

return the corresponding key Ki for any i. If C0 is dif-
ferent from all the C0i’s, F sends C0 to its decryption
oracle, obtains value v, and lets Pj return v to Z.

6. When Z halts, F outputs whatever Z outputs and halts.

We apply a standard hybrid argument to analyze the
success probability of F. Let the random variable Di denote
the output of Z from an interaction that is identical to an in-
teraction with S in the ideal process, except that the first i
pairs are computed with correct generation, and the last pair
are computed with non-corresponding generation. We can
see that D0 is identical to the output of Z in the ideal pro-

34
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.1 JANUARY 2006

cess world, and Dl is identical to the output of Z in the real
life world. (This follows from the fact that the mechanism
KEM guarantees that KEM.Decrypt(sk, C0) = K, where C0

= KEM.Encrypt(pk), this is called “soundness.”) Further-
more, in the simulation of F, if the value C0h that F obtains
from its encryption oracle is the encryption of Kh then the
output of the simulated Z has the distribution of Dh−1. If
C0h does not correspond to the encryption of the key, then
the output of the simulated Z has the distribution of Dh.
As discussed above, we can construct attacker F by using
the distinguishable environment Z. We can conclude that
if πKEM does not securely realize FKEM, then πKEM is not
IND-CCA2-KEM. �

4. Universally Composable DEM Is Equivalent to IND-
P2-C2 DEM

4.1 The KEM-DEM Functionality FKEM-DEM

We define KEM-DEM functionality FKEM-DEM in Fig. 5
and Fig. 6. FKEM-DEM is the hybrid usage of KEM
and DEM, KEM-key-generation, KEM-encryption, KEM-
decryption, DEM-encryption and DEM-decryption. Infor-
mation obtained in KEM-encryption and KEM-decryption
is transfered to DEM-encryption and DEM-decryption in-
side FKEM-DEM. Here note that there is no functionality of
data transmission between parties in FKEM-DEM.

4.2 UC DEM Is Equivalent to IND-P2-C2 DEM

First, we define protocol πKEM-DEM in Fig. 7 that is con-
structed on algorithm DEM = (DEM.Encrypt,DEM.D-
ecrypt) in the FKEM-hybrid model. We say that the under-
lying DEM is UC secure if and only if πKEM-DEM securely
realizes FKEM-DEM in the FKEM-hybrid model.

Therefore, the following theorem implies that UC
DEM is equivalent to IND-P2-C2 DEM.

Theorem 4. Protocol πKEM-DEM securely realizes FKEM-
DEM with respect to non-adaptive adversaries in the FKEM-
hybrid model if and only if DEM is indistinguishable
against adaptive chosen plaintext/ciphertext attacks(IND-
P2-C2 DEM).

Proof. (sketch) (“only if” part) Because NM-P2-C2-DEM
equals IND-P2-C2-DEM by Theorem 2, we prove that if
πDEM (is denoted as a transformed protocol from DEM to,
like πKEM) is not NM-P2-C2-DEM secure, then πKEM-DEM

does not securely realize FKEM-DEM in the FKEM - hybrid
model. In more detail, we prove that we can construct an
environment Z and a real life adversary A such that for any
ideal process adversary (simulator) S , Z can tell whether it
is interacting with A and πKEM-DEM or with S in the ideal
process for FKEM-DEM by using the adversary which breaks
NM-P2-C2-DEM. Note that A corrupts no party and Z sends
no messages to A. We assume that there exists a successful

Functionality FKEM-DEM

FKEM-DEM proceeds as follows, running with parties
P1, . . . , Pn and an adversary S .

KEM.KeyGen

In the first activation, expect to receive (KEM.KeyGen, sid)
from some party P j. Then,

1. Send (KEM.KeyGen, sid) to S .
2. Upon receiving (KEM Key, sid, pk) from S , send

(KEM Key, sid, pk) to P j.

KEM.Encrypt

Upon receiving (KEM.Encrypt, sid, pk′) from some party
Pi, proceed as follows:

• If entry (Pi, C, active) is not in memory for any C,

1. Send (KEM.Encrypt, sid, pk′) to S , and receive
(Encrypted Shared Key, sid, pk′, C0) from S .

2. Send (Encrypted Shared Key, sid, pk′, C0) to
Pi, and store the pair (pk′, C0) and (Pi, C0, ac-
tive) in memory.

• Otherwise, do nothing.

KEM.Decrypt

Upon receiving (KEM.Decrypt, sid, C′0) from P j (and P j

only), hand (KEM.Decrypt, sid, C′0) to S . Upon receiving
ok from S , proceed as follows:

• If an entry (P j, C, active) is not in memory for any
C, send ok to P j and store the pair (P j, C′0, active) in
memory.

• Otherwise, do nothing.

DEM.Encrypt

Upon receiving (DEM.Encrypt, sid, m) from party Pe (e ∈
{i, j} only), proceed as follows:

• If (Pe, C0, active) is stored in memory.

– If both Pi and P j are uncorrupted, then proceeds
as follows:

1. Send (DEM.Encrypt, sid, |m|) to S , where
|m| denotes the length of m and receive
(DEM.Ciphertext, sid, c′) from S .

2. Send (DEM.Ciphertext, sid, c′) to Pe, and
store the entry (m, c′, C0) in memory.

– Otherwise, proceeds as follows:

1. Send(DEM.Encrypt, sid, m) to S , and re-
ceive (DEM.Ciphertext, sid, c′) from S .

2. Send (DEM.Ciphertext, sid, c′) to Pe, and
store the entry (m, c′, C0) in memory.

• Otherwise, do nothing.

Fig. 5 The KEM-DEM functionality.

attacker G for πDEM in the sense of NM-P2-C2-DEM. Envi-
ronment Z proceeds as usual, except that Z runs a simulated
copy of G.

Z proceeds as above, except that Z runs a simulated
copy of G. In more detail:

NAGAO et al.: A UNIVERSALLY COMPOSABLE SECURE CHANNEL BASED ON THE KEM-DEM FRAMEWORK
35

Functionality FKEM-DEM (continued)
DEM.Decrypt

Upon receiving (DEM.Decrypt, sid, c′) from Pe (e ∈ {i, j}
only), hand (DEM.Decrypt, sid, c′) to S . Upon receiving
(DEM.Plaintext, sid, φ) from S , proceed as follows:

• If entry (Pe, C, active) exists in memory for some C:

1. If entry (m, c′, C) is stored in memory, then send
(DEM.Plaintext, sid, m) to P j.

2. Else, if Pi and P j are not corrupted, and if (m,
c′, C) is not recorded in the memory, then store
entry (⊥, c′, C) and send (DEM.Plaintext, sid,
⊥) to Pe.

3. Else, if entry (⊥, c′, C) is recorded, send
(DEM.Plaintext, sid, ⊥) to Pe.

4. Otherwise, send (DEM.Plaintext, sid, φ) to Pe,
and record entry (φ, c′, C) in memory.

• Otherwise, do nothing.

Fig. 6 The KEM-DEM functionality.

1. Activates key receiver Pj with (KEM.KeyGen, sid),
then obtains pk.

2. Activates key encrypter Pi with (KEM.Encrypt, sid,
pk), then obtains C0

∗.
3. Activates Pj with (KEM.Decrypt, sid, C0).
4. Activates message encrypter Pi with (DEM.Encrypt,

sid, m), then obtains c.
5. Activates G on c, obtains (R, c), where R is some rela-

tion.
6. Activates Pj with (DEM.Decrypt, sid, c[i]) for each i,

and obtains m′[i].
7. Returns 1 iff R(m, m′).

When Z interacts with A and πKEM-DEM, Z obtains ci-
phertext c in Step 4. In this case, Z returns 1 in Step 7.
Therefore, when Z interacts with A and πKEM-DEM, Z out-
puts 1 with non-negligible probability. On the other hand,
when Z interacts with S in the ideal process for FKEM, Z
also obtains ciphertext c in Step 4. For ciphertext c, G suc-
cessfully obtains (R, c). However Z cannot output 1 in Step
7 because there is no relation R(m, m′).

(“if” part) We prove that if πKEM-DEM does not securely
realize FKEM-DEM, then πDEM is not IND-P2-C2-DEM. In
more detail, we assume that there is an adversary A such
that for any simulator S , there is an environment Z that can
tell with non-negligible probability whether it is interacting
with FKEM-DEM and S in the ideal process world or with
parties running πKEM-DEM and the adversary A in the real life
world. Next, we prove that there is an adversary F that can
break IND-P2-C2-DEM by using distinguishable Z. Note
that there are three cases of party corruption since we take
account of non-adaptive adversaries.

Recall the formal settings, there are three types of mes-
sages between Z and A. That is, Z sends A a message either
to corrupt parties, or to report on message sending, or to de-
liver some message. In this protocol, no party corruption

Protocol πKEM-DEM

Key Encapsulation Mechanism KEM

KEM.KeyGen

1. Upon input (KEM.KeyGen, sid), P j sends (KEM.Key
Gen, sid1) to FKEM.

2. Upon receiving (KEM Key, sid1, pk) from FKEM, P j

outputs pk.

KEM.Encrypt

Upon input (KEM.Encrypt, sid, pk) within party Pi,

• If boolean variable active is not set,

1. Pi sends (KEM.Encrypt, sid1, pk) to FKEM.
2. Upon receiving (Encrypted Shared key, sid1,

pk, K, C0) from FKEM, then Pi outputs C0 and
stores key K in memory and sets a boolean vari-
able active in memory.

• Otherwise, do nothing.

KEM.Decrypt

Upon input (KEM.Decrypt, sid, C0) within P j,

• If boolean variable active is not set,

1. P j sends (KEM.Decrypt, sid1, C0) to FKEM.
2. Upon receiving (Shared Key sid1, K), P j stores

K in memory and outputs ok and sets a boolean
variable active in memory.

• Otherwise, do nothing.

Data Encapsulation Mechanism DEM

DEM.Encrypt

Upon input (DEM.Encrypt, sid, m) from Pe (e ∈ {i, j}), pro-
ceed as follows:

• If the boolean variable is active in Pe’s memory, Pe

obtains ciphertext c = DEM.Encrypt(K, m) and out-
puts (DEM Ciphertext, sid, c).

• Otherwise do nothing.

DEM.Decrypt

Upon input (DEM.Decrypt, sid, c) from Pe (e ∈ {i, j}), pro-
ceed as follows:

• If the boolean variable is active in Pe’s memory, Pe

obtains m = DEM.Decrypt (K, c) and outputs (DEM
Plaintext, sid, m).

• Otherwise do nothing.

Fig. 7 The KEM-DEM protocol.

occurs during execution since we consider non-adaptive ad-
versaries. Furthermore, parties don’t send messages to each
other. Therefore, there are no requests to report on or deliver
messages. In fact, there is no communication between Z and
A at all. Thus, the only way that S affects the output of Z is
the communication via FKEM-DEM.

We will show that Z can distinguish what is only when
both sender Pi and receiver Pj are not corrupted. We discuss
all the cases for the following simulator S as follows:

1. When S receives (KEM.KeyGen, sid), S obtains (pk,

36
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.1 JANUARY 2006

sk) by running KEM.KeyGen(), and returns (KEM
Key, sid, pk) to FKEM-DEM.

2. When S receives (KEM.Encrypt, sid, pk), S generates
a corresponding pair (K, C0), and returns (Encrypted
Shared Key, sid, pk, C0) to FKEM-DEM.

3. When S receives (KEM.Decrypt, sid, C0), S obtains
key K by KEM.Decrypt(sk, C0), and returns ok to
FKEM-DEM.

4. When S receives (DEM.Encrypt, sid, |m|), S generates
c′ from the output of DEM.Encrypt(K, 0|m|), and re-
turns (DEM.Ciphertext, sid, c′) to FKEM-DEM.

5. When S receives (DEM.Encrypt, sid, m), S generates
c′ from the output of DEM.Encrypt(K, m) and returns
(DEM.Ciphertext, sid, c′) to FKEM-DEM.

6. When S receives (DEM.Decrypt, sid, c′), S generates
φ by DEM.Decrypt(K, c′), and sends (DEM.Plaintext,
sid, φ).

(Case 1: Sender Pi is corrupted.) In this case, once A
corrupts Pi, simulator S corrupts dummy party P̃i. However,
receiver Pj is not corrupted, that is, Pj is honest. Environ-
ment Z cannot distinguish the real life world from the ideal
process world for the above simulator S because S can re-
construct by using the simulated copy of A. Note that, A can
stop the protocol πKEM-DEM. Even if this situation happens,
Z cannot distinguish the real world from the ideal world,
because S can also stop the protocol.

(Case 2: Receiver Pj is corrupted.) In this case, once
A corrupts Pj, simulator S corrupts dummy party P̃ j. How-
ever, sender Pi is not corrupted, that is, Pi is honest. En-
vironment Z cannot distinguish the real life world from the
ideal process world by the above simulator S because simu-
lator S can reconstruct by using the simulated copy of A.

(Case 3: No party is corrupted.) In this case, sender
Pi and receiver Pj are not corrupted i.e., they are honest
parties. We look at the generated key and ciphertext by Pi

in each world.

• In the real life world, πKEM-DEM runs among the
honest parties, Pi generates c by running algorithm
DEM.Encrypt(K,m). Note that c corresponds to m.

• In the ideal process world, FKEM-DEM sends (DEM.
Encrypt, sid, |m|) to S . Pi obtains c′ from S via
FKEM-DEM. Note that c does not correspond to m be-
cause S sees only the length of m.

By applying a hybrid argument similar to the one in the
proof of Theorem 3, we can obtain adversary F that attacks
IND-P2-C2-DEM by using the environment Z that can dis-
tinguish the real world from the ideal world. �

5. A Universally Composable Secure Channel Based on
the KEM-DEM Framework

To realize secure channel functionality, FSC, defined in [5],
we define a secure channel protocol πSC in Fig. 8 in the
(FKEM-DEM, FSIG, FCA)-hybrid model, where FSIG is a sig-
nature functionality [4], and FCA is certification authority

Protocol πSC

Session Set-up

1. Upon input (Establish-session, sid,P j, initiator), Pi

sends (KEM.KeyGen, sid1) to FKEM-DEM, and stores
(sid,P j).

2. Upon receiving (KEM Key, sid1, PKi) from
FKEM-DEM, Pi sends (Register, Pi, PKi) to FCA.

3. Upon input (Establish-session, sid, Pi, responder), P j

sends (Retrieve, Pi) to FCA.
4. Upon receiving (Retrieve, Pi, PKi) from FCA, P j

sends (KEM.Encrypt, sid1, PKi) to FKEM-DEM, and
receives (Encrypted Shared key, sid1, PKi, C0) from
FKEM-DEM.

5. P j sends (KeyGen, (P j, sid′)) to FSIG, receives (Veri-
fication Key, (P j, sid′), PK j).

6. P j sends (Register, P j, PK j) to FCA, then sends (Sign,
P j, C0) to FSIG, receives (Signature, (P j, sid′), C0, σ)
from FSIG.

7. P j sends (sid, C0, σ, P j) to Pi, and sets a boolean
variable active.

8. Upon receiving (sid, C0, σ, P j), Pi checks whether
(sid,P j) is stored. If it is not stored, discard the
message. Otherwise, Pi sends (Retrieve, P j) to FCA

and receives (Retrieve, P j, PK j), then sends (Verify,
(P j, sid′), C0, σ, PK j) to FSIG and receives (Verified,
(P j, sid′), C0, f). If f is 1, Pi goes to next step. Else
finish the protocol.

9. Pi sends (KEM.Decrypt, sid1, C0) to FKEM-DEM. If
ok is returned from FKEM-DEM, set a boolean variable
active.

Data Exchange

1. Upon input (Send, sid,m), to Pe, if Pe is active (i.e.,
e ∈ {i, j}), Pe sends message (DEM.Encrypt, sid1, m)
to FKEM-DEM.

2. Upon receiving (DEM.Ciphertext, c) fromFKEM-DEM,
Pe sends c to Pē.

3. Upon receiving c, if Pē is active (i.e., ē ∈ {i, j}), Pē

sends (DEM.Decrypt, sid1, c) to FKEM-DEM.
4. Pē receives (DEM.Plaintext, m) from FKEM-DEM and

outputs m.

Session Ending

1. Upon input (Expire-session, sid), Pe sends (Expire-
session, sid) to Pē and erases the session state (includ-
ing all keys and local values) and terminates this pro-
tocol.

2. Upon receiving (Expire-session, sid), Pē erases the
session state (including all keys and local values) and
terminates this protocol.

Fig. 8 The secure channel protocol πSC.

functionality [4]. (Due to the page limitation, we omit the
description of FSIG and FCA. See [4] for the definitions.)

In combination with the previous theorems, the fol-
lowing theorem implies that IND-CCA2 KEM, IND-P2-C2
DEM, secure signatures and ideal CA are sufficient to UC-
realize FSC.

Theorem 5. Protocol πSC UC-realizes FSC in the
(FKEM-DEM, FSIG, FCA)-hybrid model with respect to adap-
tive adversary.

NAGAO et al.: A UNIVERSALLY COMPOSABLE SECURE CHANNEL BASED ON THE KEM-DEM FRAMEWORK
37

Proof. Let A be an adversary that interacts with parties run-
ning πSC in the (FKEM-DEM, FSIG, FCA)-hybrid model, and S
be an ideal process adversary (simulator) that interacts with
the ideal process for FSC. We construct S such that no envi-
ronment Z can tell whether it is interacting with A in πSC or
with S in the ideal process for FSC. S invokes a simulated
copy of A, and proceeds as follows:

1. Inputs from Z are forwarded to A and outputs from A
are forwarded to Z.

2. (Simulating the interaction of A in the session set-
up) Upon receiving a message (sid, Pi, Pj) from FSC

(which means that Pi and Pj have set-up a session),
simulate for A the process of exchanging the shared
key between Pi and Pj. That is, play functionalities,
FCA, FKEM-DEM, FSIG, for A as follows: send to A (in
the name of FKEM-DEM) the message (KEM.KeyGen,
sid1, PKi), obtain the response (KEM Key, sid1, PKi)
from A; send to A (in the name of FCA) the message
(Registered, Pi, PKi), obtain the response ok from A;
send to A (in the name of FCA) the message (Retrieve,
Pi, Pj), obtain the response ok from A; send to A (in
the name of FKEM-DEM) the message (KEM.Encrypt,
sid1, PKi), obtain the response (Encrypted Shared key,
sid1, PKi, C0) from A; send to A (in the name of FSIG)
the message (KeyGen, (Pj, sid′)), obtain the response
(Verification Key, (Pj, sid′), PKj) from A; send to A (in
the name of FCA) the message (Registered, Pj, PKj),
obtain the response ok from A; send to A (in the name
of FSIG) the message (Sign, (Pj, sid′), C0), obtain the
response (Signature, (Pj, sid′), C0, σ) from A; send to
A (in the name of FCA) the message (Retrieve, Pj, Pi),
obtain the response ok from A; send to A (in the name
of FSIG) the message (Verify, (Pj, sid′), C0, σ, PKj),
obtain the response (Verified, (Pj, sid′), C0, φ) from
A; send to A (in the name of FKEM-DEM) the message
(KEM.Decrypt, sid1,C0, PKi), obtain the response ok
from A.

3. (Simulating the interaction of A in the data ex-
change) Upon receiving a message (sid, Pe, u) (e ∈
{i, j}) from FSC (which means that Pe sent a message
of length u to Pē), simulate for A the process of ex-
changing shared key between Pi and Pj. That is, play
functionality FKEM-DEM for A as follows: send to A (in
the name of FKEM-DEM) the message (DEM.Encrypt,
sid1, |m|), obtain the response (DEM.Ciphertext, sid1,
c) from A; send to A (in the name of FKEM-DEM) the
message (DEM.Decrypt, sid1, c), obtain the response
(DEM.Plaintext, sid1, ψ) from A.

4. (Simulating the interaction of a corrupted party)
Simulating the interaction of a corrupted party can be
done by simulating the functionalities and transmis-
sions in the natural way. Considering all cases of the
party corruption, we have three cases of party corrup-
tion — (Case 1: Sender Pi is corrupted), (Case 2: Re-
ceiver Pj is corrupted) and (Case 3: both Pi and Pj are
corrupted) as follows:

• (Case 1: Sender Pi is corrupted.)

– (Simulating the interaction of A in the ses-
sion set-up)
This situation is same as the case that Pi is
not corrupted as above.

– (Simulating the interaction of A in the data
exchange)
Upon receiving a message (sid, Pe, u)
(e ∈ {i, j}) from FSC, simulate for A
the process of exchanging shared key be-
tween Pi and Pj. That is, play function-
ality FKEM-DEM for A as follows: send to
A (in the name of FKEM-DEM) the message
(DEM.Encrypt, sid1,m), obtain the response
(DEM.Ciphertext, sid1, c) from A; send to
A (in the name of FKEM-DEM) the message
(DEM.Decrypt, sid1, c), obtain the response
(DEM.Plaintext, sid1, ψ) from A.

• (Case 2: Receiver Pj is corrupted.)

– (Simulating the interaction of A in the ses-
sion set-up)
This situation is same as the case that Pj is
not corrupted as above.

– (Simulating the interaction of A in the data
exchange)
Upon receiving a message (sid, Pe, u)
(e ∈ {i, j}) from FSC, simulate for A
the process of exchanging shared key be-
tween Pi and Pj. That is, play function-
ality FKEM-DEM for A as follows: send to
A (in the name of FKEM-DEM) the mes-
sage (DEM.Encrypt, sid1, |m|), obtain the re-
sponse (DEM.Ciphertext, sid1, c) from A
since sender Pi is not corrupted; send to
A (in the name of FKEM-DEM) the message
(DEM.Decrypt, sid1, c), obtain the response
(DEM.Plaintext, sid1, ψ) from A.

• (Case 3: Both Pi and Pj are corrupted.)

– (Simulating the interaction of A in the ses-
sion set-up)
This situation is same as the case that no
party is corrupted as above.

– (Simulating the interaction of A in the data
exchange)
Upon receiving a message (sid, Pe, u)
(e ∈ {i, j}) from FSC, simulate for A
the process of exchanging shared key be-
tween Pi and Pj. That is, play function-
ality FKEM-DEM for A as follows: send to
A (in the name of FKEM-DEM) the message
(DEM.Encrypt, sid1,m), obtain the response
(DEM.Ciphertext, sid1, c) from A; send to
A (in the name of FKEM-DEM) the message
(DEM.Decrypt, sid1, c), obtain the response
(DEM.Plaintext, sid1, ψ) from A.

38
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.1 JANUARY 2006

In all three cases, S can simulate as above by using a
simulated copy of A.

5. (Simulating party corruption) We deal with an
adaptive adversary that can corrupt parties at any time.
Referring to the UC framework, environment Z acti-
vates a party or an adversary (or simulator) in the order
of input. That is, Z has nothing to activate at the same
time (because this framework deal with the ITM). Con-
sidering adversary corruption, adversary corrupts at the
following points.

a. Before activating with (Establish-session, sid, Pj,
initiator) in the Session Set-up.

b. Before activating with (Establish-session, sid, Pi,
responder) in the Session Set-up.

c. Before activating with (Send, sid, m) in the Data
Exchange.

d. Before activating with (Expire-session, sid) in the
Session Ending.

However, case (a) is the same as the non-adaptive ad-
versary on each party corruption as above. Whenever
A corrupts a party, S corrupts that party in the ideal
process and forwards the obtained information to the
simulated copy of A. If the simulated copy of A cor-
rupts a party Pi or Pj then S corrupts Pi or Pj in the
ideal process, and provides A with the simulated in-
ternational state of the corrupted party. (It is easy to
verify that this state is always implied by the informa-
tion already known to S at the time of corruption from
the simulated copy of A.) Additionally, in this protocol,
no party has any secret information becauseFKEM-DEM,
FCA and FSIG are run securely. In all cases, since S can
simulate A by using his simulated world, Z cannot dis-
tinguish the real life world from ideal process world.
That is, simulating party corruption is done perfectly.

It is straightforward to verify that the simulation is per-
fect. That is, for any environment Z and A, it holds that
the view of Z interacting with S and FSC is distributed
identically to the view of Z interacting with A and parties
running protocol πSC in the (FKEM-DEM, FSIG, FCA)-hybrid
model. �

6. Conclusion

The KEM-DEM framework is a promising formulation for
hybrid encryption based on symmetric and asymmetric en-
cryption, and will be standardized in ISO in the near fu-
ture. This paper studied the possibility of constructing a UC
secure channel using the KEM-DEM framework. We pre-
sented that IND-CCA2 KEM and IND-P2-C2 DEM along
with secure signatures and ideal certification authority are
sufficient to realize a UC secure channel. This paper also
showed several equivalence results: UC KEM, IND-CCA2
KEM and NM-CCA2 KEM are equivalent, and UC DEM,
IND-P2-C2 DEM and NM-P2-C2 DEM are equivalent.

References

[1] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, “Rela-
tions among notions of security for public-key encryption schemes,”
Crypto’98, LNCS 1462, pp.26–46, 1998.

[2] M. Bellare and A. Sahai, “Non-malleable encryption: Equivalence
between two notions, and an indistinguishability-based characterisa-
tion,” Crypto’99, LNCS 1666, pp.519–536, 1999.

[3] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” 42nd FOCS, pp.136–145, 2001.

[4] R. Canetti, “Universally composable signature, certification, and au-
thentication,” http://eprint.iacr.org/2003/239/, Aug. 2004.

[5] R. Canetti and H. Krawczyk, “Universally composable notions of
key exchange and secure channels,” Eurocrypt’02, LNCS 2332,
pp.337–351, 2002.

[6] R. Canetti and T. Rabin, “Universal composition with joint state,”
Proc. Crypto 2003, LNCS 2729, pp.265–281, 2003.

[7] R. Cramer and V. Shoup, “Design and analysis of practical public-
key encryption schemes secure against adaptive chosen ciphertext
attack,” http://shoup.net/papers/, Dec. 2001.

[8] D. Dolev, C. Dwork, and M. Naor, “Non-malleable cryptography,”
Proc. STOC, pp.542–552, 1991.

[9] J. Katz and M. Yung, “Characterization of security notions for prob-
abilistic private-key encryption,” http://www.cs.umd.edu/˜jkatz/

[10] W. Nagao, On the Security of Secure Channels, Master’s Thesis,
Kyoto University, March 2005.

[11] V. Shoup, “A proposal for an ISO standard for public key encryp-
tion (version 2.1),” ISO/IEC JTC1/SC27, N2563, http://shoup.net/p-
apers/, Dec. 2001.

Waka Nagao received the B.E. degree from
Osaka Prefecture University, Osaka in 2003. He
received M.E. degree from Kyoto University,
Kyoto, Japan in 2005. Currently, he is a doctor
course student of Kyoto University. His research
interests are cryptography and information secu-
rity.

Yoshifumi Manabe received the B.E.,
M.E., and Dr.E. degrees from Osaka University,
Osaka, Japan, in 1983, 1985, and 1993, respec-
tively. In 1985, he joined Nippon Telegraph and
Telephone Corporation. Currently, he is a se-
nior research engineer, supervisor of NTT Cyber
Space Laboratories. His research interests in-
clude distributed algorithms, cryptography, and
operating systems. He is a guest associate pro-
fessor of Kyoto University since 2001. He is a
member of ACM, IPSJ, and IEEE.

Tatsuaki Okamoto received the B.E., M.E.,
and Dr.E. degrees from the University of Tokyo,
Tokyo, Japan, in 1976, 1978, and 1988, respec-
tively. He is a Fellow of NTT Information Shar-
ing Platform Laboratories. He is presently en-
gaged in research on cryptography and informa-
tion security. Dr. Okamoto is a director of the
Japan Society for Industrial and Applied Math-
ematics, and a guest professor of Kyoto Univer-
sity.

