
262
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.1 JANUARY 2008

PAPER Special Section on Cryptography and Information Security

Universally Composable Identity-Based Encryption∗∗

Ryo NISHIMAKI†∗a), Nonmember, Yoshifumi MANABE†,††b), and Tatsuaki OKAMOTO†,†††c), Members

SUMMARY Identity-based encryption (IBE) is one of the most impor-
tant primitives in cryptography, and various security notions of IBE (e.g.,
IND-ID-CCA2, NM-ID-CCA2, IND-sID-CPA etc.) have been introduced.
The relations among them have been clarified recently. This paper, for the
first time, investigates the security of IBE in the universally composable
(UC) framework. This paper first defines the UC-security of IBE, i.e., we
define the ideal functionality of IBE, FIBE. We then show that UC-secure
IBE is equivalent to conventionally-secure (IND-ID-CCA2-secure) IBE.
key words: identity-based encryption, IND-ID-CCA2, universal composi-
tion

1. Introduction

1.1 Background

The concept of identity-based encryption (IBE), introduced
by Shamir [21], is a variant of public-key encryption (PKE),
where the identity of a user is employed in place of the user’s
public-key.

Boneh and Franklin [6] defined IND-ID-CCA2 (in-
distinguishability against adaptive chosen-ciphertext attacks
under chosen identity attacks) as the desirable security of
IBE schemes. Canetti, Halevi, and Katz [11], [12] de-
fined a weaker notion of security in which the adversary,
ahead of time, commits to the challenge identity it will at-
tack. We refer to this notion as selective identity (sID)
adaptive chosen-ciphertext secure IBE (IND-sID-CCA2).
In addition, they also defined a weaker security notion of
IBE, selective-identity chosen-plaintext (CPA) secure IBE
(IND-sID-CPA). Attrapadung, Cui, Galindo, Hanaoka, Ha-
suo, Imai, Matsuura, Yang and Zhang [1] introduced non-
malleability (NM) and semantic security (SS) to the set of
security notions of IBE. Thus, the security definitions con-

Manuscript received March 23, 2007.
Manuscript revised July 15, 2007.
†The authors are with the Graduate School of Informatics,

Kyoto University, Kyoto-shi, 606-8501 Japan.
††The author is with NTT Communication Science Laborato-

ries, NTT Corporation, Atsugi-shi, 243-0198 Japan.
†††The author is with NTT Information Sharing Platform Labo-

ratories, NTT Corporation, Musashino-shi, 180-8585 Japan.
∗Presently, with NTT Information Sharing Platform Laborato-

ries, NTT Corporation, and with Department of Mathematical and
Computing Sciences, Tokyo Institute of Technology.

∗∗A preliminary version of this paper was presented at VI-
ETCRYPT, LNCS, vol.4341, pp.337–353, Sept., 2006

a) E-mail: nishimaki.ryo@lab.ntt.co.jp
b) E-mail: manabe.yoshifumi@lab.ntt.co.jp
c) E-mail: okamoto.tatsuaki@lab.ntt.co.jp

DOI: 10.1093/ietfec/e91–a.1.262

sidered up to now in the literature are: G-A1-A2, where
G ∈ {IND, NM, SS}, A1 ∈ {ID, sID}, ID denotes chosen
identity attacks, and A2 ∈ {CPA, CCA1, CCA2}.

Attrapadung, Cui, Galindo, Hanaoka, Hasuo, Imai,
Matsuura, Yang and Zhang [1] clarified the relationship
among these notions, and showed that IND-ID-CCA2 is
equivalent to the strongest security notion among them,
NM-ID-CCA2.

Since Canetti introduced universal composability (UC)
as a framework for analyzing the security of cryptographic
primitives/protocols [8], investigating the relation between
UC-secure primitives/protocols and conventionally-secure
primitives/protocols has been a significant topic in cryp-
tography [2], [3], [9], [10], [13], [16], [20]. Since UC repre-
sents stronger security requirements, a lot of conventionally-
secure protocols fail to meet UC security requirements.
For example, we cannot design secure two party protocols
in the UC framework with no setup assumption [8], [10],
[14], [15], [17], [18], while there are conventionally-secure
two party protocols (e.g., commitment and zero-knowledge
proofs) with no setup assumption.

We do know, however, that the conventional secu-
rity notions are equivalent to UC security notions for a
few cryptographic primitives. For example, UC-secure
PKE is equivalent to conventionally-secure (IND-CCA2-
secure) PKE [8], UC-secure signatures are equivalent
to conventionally-secure (existentially unforgeable against
chosen message attacks: EUF-CMA-secure) signatures
[9] and UC-secure Key Encapsulation Mechanism (KEM)
is equivalent to conventionally-secure (IND-CCA2-KEM-
secure) KEM [19].

IBE is a more complex cryptographic primitive than
PKE or signatures, so it is not clear whether conventionally-
secure (i.e., IND-ID-CCA2-secure) IBE is equivalent to
UC-secure IBE or not. Since IBE is one of the most sig-
nificant primitives [4]–[7], [22] like PKE and signatures in
cryptography, it is important to clarify the relationship be-
tween UC security and the conventional security notions of
IBE. The UC security of IBE, however, has not been inves-
tigated. That is, we have the following problems:

1. What is the security definition of IBE in the UC frame-
work (i.e., how to define an ideal functionality of IBE)?

2. Is UC-secure IBE equivalent to IND-ID-CCA2-secure
IBE?

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers



NISHIMAKI et al.: UNIVERSALLY COMPOSABLE IDENTITY-BASED ENCRYPTION
263

1.2 Our Results

This paper answers the above problems:

1. This paper defines the UC-security of IBE, i.e., we de-
fine the ideal functionality of IBE, FIBE.

2. We show that UC-secure IBE is equivalent to
conventionally-secure (IND-ID-CCA2-secure) IBE.

2. Preliminaries

2.1 Notations

We describe probabilistic algorithms and experiments us-
ing standard notations and conventions. For probabilis-
tic algorithm A, A(x1, x2, . . . ; r) denotes the random vari-
able of A’s output on inputs x1, x2, . . . and coins r. We let

y
R← A(x1, x2, . . .) denote that y is randomly selected from

A(x1, x2, . . . ; r) according to its distribution. If S is a finite

set, then x
U← S denotes that x is uniformly selected from S .

If α is neither an algorithm nor a set, then x ← α indicates
that we assign α to x.

We say that function f : N → R is negligible in se-
curity parameter k if for every constant c ∈ N, there exists
kc ∈ N such that f (k) < k−c for any k > kc. Hereafter, we
often use f < ε(k) to mean that f is negligible in k. On the
other hand, we use f > ν(k) to mean that f is non-negligible
in k. i.e., function f : N → R is non-negligible in k, if there
exists a constant c ∈ N such that for every kc ∈ N, there
exists k > kc such that f (k) > k−c. A distribution ensemble
X = {X(k, z)}k∈N,z∈{0,1}∗ is an infinite set of probability distri-
butions, where a distribution X(k, z) is associated with each
k ∈ N and z ∈ {0, 1}∗. The ensembles considered in this
paper describe outputs of computations where parameter z
represents input, and parameter k is taken to be the secu-
rity parameter. Two binary distribution ensembles X and Y
are statistically indistinguishable (written X ≈ Y) if for any
c, d ∈ N there exists kc ∈ N such that for any k > kc and any
z ∈ ∪κ≤kd {0, 1}κ we have:

| Pr[X(k, z) = 1] − Pr[Y(k, z) = 1]| < k−c

2.2 Definition of Identity-Based Encryption

Identity-Based Encryption Schemes.

In this section, we define identity-based encryption schemes
and its security notions.

Definition 2.1 (Identity-Based Encryption Schemes): Iden-
tity-based encryption scheme Σ consists of four algorithms
(Set,Xtr,Enc,Dec):

Setup: Set takes security parameter k and returns PK (sys-
tem parameters) and MK (master-key). The system pa-
rameters include a description of a finite message space

M, and a description of a finite ciphertext space C.
Intuitively, the system parameters should be publicly
known, while MK is known only by the setup party.

Extract: Xtr takes as input PK, MK, and an arbitrary ID ∈
{0, 1}∗, and returns private key dk. Here ID is an arbi-
trary string that will be used as a public key, and dk is
the corresponding private decryption key. The extract
algorithm extracts a private key from the given public
key.

Encrypt: Enc takes as input PK, ID, and m ∈ M. It returns
ciphertext c ∈ C.

Decrypt: Dec takes as input PK, c ∈ C, and private key dk.
It returns m ∈ M.

These algorithms must satisfy the standard consistency
constraint, namely, ∀m ∈ M : Dec(PK, c, dk) = m
where c = Enc(PK, ID,m), dk = Xtr(PK,MK, ID)

Security of Identity-Based Encryption Schemes.

LetA = (A1,A2) be an adversary; we sayA is polynomial
time if both probabilistic algorithmsA1 andA2 are polyno-
mial time. In the first stage, given the system parameters, the
adversary computes and outputs challenge template τ. A1

can output some information, s, which will be transferred
toA2. In the second stage, the adversary is challenged with
target ciphertext c∗ generated from τ by a probabilistic func-
tion, in a manner depending on the goal. We say adversary
A successfully breaks the scheme if she achieves her goal.
We consider a security goal, IND [1], and three attack mod-
els, ID-CPA, ID-CCA, ID-CCA2, listed in order of increas-
ing strength. The difference among the models is whether
or notA1 orA2 is granted access to decryption oracles.

We describe in Table 1 and Table 2 the ability with
which the adversary can, in the different attack mod-
els, access the Extraction Oracle Xtr(PK,MK, ·), the En-
cryption Oracle Enc(PK, ID, ·) and the Decryption Oracle
Dec(PK, ·, dk). When we say Oi = {XOi,EOi,DOi} =
{Xtr(PK,MK, ·),Enc(PK, ID, ·),⊥}, where i ∈ {1, 2}, we
mean that no decryption oracle can be used.

Let Σ = (Set,Xtr,Enc,Dec) be an identity based en-
cryption scheme and letA = (A1,A2) be an adversary. For
atk ∈ {id-cpa, id-cca, id-cca2} and k ∈ N let,

Advind-atk
Σ,A (k) = Pr[Expind-atk-1

Σ,A (k) = 1]

− Pr[Expind-atk-0
Σ,A (k) = 1]

Table 1 Oracle Set O1 in the Definitions of the Notions for IBE.

O1 = {XO1,EO1,DO1}
ID-CPA {Xtr(PK,MK, ·),Enc(PK, ID, ·),⊥}
ID-CCA {Xtr(PK,MK, ·),Enc(PK, ID, ·),Dec(PK, ·, dk)}
ID-CCA2 {Xtr(PK,MK, ·),Enc(PK, ID, ·),Dec(PK, ·, dk)}

Table 2 Oracle Set O2 in the Definitions of the Notions for IBE.

O2 = {XO2,EO2,DO2}
ID-CPA {Xtr(PK,MK, ·),Enc(PK, ID, ·),⊥}
ID-CCA {Xtr(PK,MK, ·),Enc(PK, ID, ·),⊥}
ID-CCA2 {Xtr(PK,MK, ·),Enc(PK, ID, ·),Dec(PK, ·, dk)}



264
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.1 JANUARY 2008

where for b, d ∈ {0, 1} and |m0| = |m1|,
Experiment Expind-atk-b

Σ,A (k)

(PK,MK)
R← Set(1k);

(m0,m1, s, ID)
R← AO1

1 (PK);

c∗
R← Enc(PK, ID,mb);

d
R← AO2

2 (m0,m1, s, c∗, ID);
return d

Definition 2.2 (IND-ID-CCA2-secure): We say that Σ is
IND-ID-CCA2-secure, if Advind-id-cca2

Σ,A (k) is negligible for
anyA.

2.3 Universal Composability

The universally composable security framework allows the
security properties of cryptographic tasks to be defined such
that security is maintained under a general composition with
an unbounded number of instances of arbitrary protocols
running concurrently. Security in this framework is called
universally composable (UC) security. Informally, we de-
scribe this framework as follows: (See [8] for more details.)

We consider the real life world, the ideal process
world, and environmentZ that tries to distinguish these two
worlds.

The real life world.

In this world, there are adversary A and protocol π
which realizes a functionality among some parties. Let
REALπ,A,Z(k, z, r) denote the output of environmentZ when
interacting with adversary A and parties P1, . . . , Pn run-
ning protocol π (hereafter denoted as (A, π)) on secu-
rity parameter k, auxiliary input z and random input r =
(rZ, rA, r1, . . . , rn) (z and rZ for Z, rA for A, ri for party
Pi). Let REALπ,A,Z(k, z) denote the random variable describ-
ing REALπ,A,Z(k, z, r) when r is uniformly chosen.

The ideal process world.

In this world, there are simulator S that simulates the
real life world, ideal functionality F , and dummy parties.
Let IDEALF ,S,Z(k, z, r) denote the output of environment Z
when interacting with adversary S and ideal functionality F
(hereafter denoted as (S,F )) on security parameter k, auxil-
iary input z and random input r = (rZ, rS, rF ) (z and rZ for
Z, rS for S, rF for party F ). Let IDEALF ,S,Z(k, z) denote
the random variable describing IDEALF ,S,Z(k, z, r) when r
is uniformly chosen. Let F be an ideal functionality and let
π be a protocol. We say that π UC-realizes F , if for any
adversary A, there exists simulator S, such that for any en-
vironmentZ we have:

IDEALF ,S,Z(k, z) ≈ REALπ,A,Z(k, z)

whereA, S andZ are probabilistic polynomial-time (PPT)
interactive Turing machines (ITMs).

3. Universally Composable Identity-Based Encryption

3.1 The IBE Functionality FIBE

Our definition of FIBE follows the one for FPKE of regular
public-key encryption schemes given by Canetti [8]. We
present IBE functionality FIBE in Fig 1.

The idea of FIBE is to allow parties to obtain idealized
(information theoretically secure) ciphertexts for messages
by using their IDs, such that private keys do not appear in the

Functionality FIBE

FIBE proceeds as follows, given domain M of plaintexts and domain N
of ID. Let µ ∈ M be a fixed message.
Setup
In the first activation, expect to receive a value (Setup, sid,T ) from
some party T . Then do:

1. Hand (Setup, sid,T ) to the adversary. Upon receiving value
(Algorithms, sid, x, e, d) from the adversary, where x, e, d are
descriptions of PPT ITMs, output (Encryption Algorithm, sid,
e) to T . (If T is corrupted, the adversary may not send x and/or
d.)

2. Record (T, x, e, d). (If T is corrupted, x and/or d may not be in-
cluded.)

Extract
Upon receiving value (Extract, sid, ID,D) from party D, proceed as
follows:

1. If ID � N or (ID, P) is recorded in ID-Reg for some P(� D), then
output an error message to D. Else if it has not received Setup
yet, ignore the request.

2. Else if T is not corrupted, record (ID,D) in ID-Reg and output
(Extracted, sid, ID,D) to D and T .

3. Otherwise, if T is corrupted, hand (Corrupted Extract, sid, ID,
D) to the adversary. Upon receiving (Corrupted Decrypt, sid,
ID, d̃ID) from the adversary, record (ID,D, d̃ID , corrupted) and
output (Extracted, sid, ID,D) to D and T . If it does not receive
it then output an error message to D and T .

Encrypt
Upon receiving value (Encrypt, sid,m, ID, e′) from some party E, pro-
ceed as follows:

1. If m � M or ID � N then output an error message to E. Else,
if e′ = e, the setup party is uncorrupted, (ID, P) is recorded
in ID-Reg for some P and decryptor P is uncorrupted, then let
c = e′(ID, µ) and record (m, c, ID) in Plain-Cipher. Else, let
c = e′(ID,m).

2. Output (Ciphertext, sid, c) to E

Decrypt
Upon receiving value (Decrypt, sid, c, ID) from D, proceed as follows:

1. If the following two conditions are satisfied then hand
(Plaintext, sid,m) to D.

a. (ID,D) is recorded in ID-Reg.
b. (m, c, ID) is stored in Plain-Cipher.

2. Else if (ID,D) is not recorded in ID-Reg or (ID,D, d̃ID , corrupted)
is not recorded then hand not-recorded to D.

3. Else if T is corrupted and (ID,D, d̃ID , corrupted) is recorded then
return (Plaintext, sid, d̃ID(c)) to D.

4. Otherwise, return (Plaintext, sid, d(c, x(ID))) to D.

Fig. 1 The ideal identity-based encryption functionality, FIBE.



NISHIMAKI et al.: UNIVERSALLY COMPOSABLE IDENTITY-BASED ENCRYPTION
265

interface, but at the same time the designated decryptor can
retrieve the plaintexts. There may be multiple designated
decryptors who let the setup party extract their private keys
from their IDs.

FIBE should be defined as follows: If no party is cor-
rupted, setup, extract, encrypt and decrypt are information
theoretically securely executed. FIBE realizes such idealized
setup, extract, encrypt and decrypt by recording IDs, cipher-
texts and plaintexts. (i.e., FIBE plays the role of the central-
ized database of encrypted messages and the corresponding
ciphertexts and IDs used to encrypt.) FIBE is written in a
way that can be realized by protocols that have only local
operations (setup, extract, encrypt, decrypt). All communi-
cation is left to the protocols that call FIBE. The important
difference between PKE and IBE is that IBE schemes have
the extract algorithm. Users need to extract private keys cor-
responding to their IDs to decrypt ciphertexts. They can-
not locally generate private keys. The setup party generates
user’s private keys. FIBE takes four types of input: setup,
extract, encrypt, and decrypt.

Upon receiving a setup request from party T (the setup
party), FIBE asks the adversary to provide three descriptions
of PPT algorithms: Extract algorithm x, encryption algo-
rithm e, and decryption algorithm d. (Note that x, e, and
d can be probabilistic.) It then outputs to T the description
of encryption algorithm e. While the encryption algorithm
is public and given to the environment (via T ), the extract
algorithm does not appear in the interface between FIBE and
T , because we need not such secret information in the ideal
world. In the ideal world, we can realize IBE functionality
by only using record. If the master key is output (and thus
sent toZ) thenZ can extract private keys by itself and easily
distinguish the two worlds. Note that decryption algorithm
d does not include any secret information (See Remark 2.).
However, it does not appear in the interface, because we do
not need it. Encryption algorithm e also plays the role of
system parameters. Note that if T is corrupted, FIBE may
not record extraction algorithm x, because corrupted T may
not output the master-key.

Upon receiving a request from some party D to extract
a private key with an ID and D (party ID), FIBE proceeds
as follows. If ID is not in domain N or (ID, P) is recorded
in ID-Reg (ID-Reg is a kind of file which records the cor-
respondence of an arbitrary identity to a party name.) for
some P, then FIBE outputs an error message to D. If FIBE

has not received Setup yet, then FIBE ignores the request.
Else if T is not corrupted, FIBE records pair (ID,D) in ID-
Reg and outputs message “extracted” to T and D. (Notice
that one party may extract multiple private keys.) FIBE only
records the correspondence between parties and IDs. If T is
corrupted, private keys may not be extracted appropriately,
so FIBE records the decryption algorithm which is sent by
the adversary. The algorithm may include incorrect private
keys. Z may obtain private keys of some parties only when
Z corrupts them. Thus FIBE need not output private keys
in the interface of extract, the adversary may not send them.
Note that the adversary may not send decryption algorithm.

In this case, decryption cannot be executed at all.
Upon receiving a request from some arbitrary party E

to encrypt message m with ID and encryption algorithm e′,
FIBE proceeds as follows. If m is not in domain M or ID is
not in domain N, FIBE outputs an error message to E. Else,
FIBE outputs formal ciphertext c to E, where c is computed
as follows. If e′ = e, the setup party is uncorrupted, (ID, P)
is recorded in ID-Reg for some P and decryptor P is un-
corrupted, then c = e(ID, µ), where µ ∈ M is some fixed
message. In this case, (m, c, ID) is recorded for future de-
cryption. Else, c = e′(ID,m). In this case, no secrecy is
guaranteed, since c may depend on m in arbitrary ways. No-
tice that if FIBE receives (Encrypt, sid,m, ID, e) before re-
ceiving (Extract, sid, ID, Ph, e) for any party Ph, then c is
not information theoretically secure, (c = e(ID,m)) even if
(Extract, sid, ID, Ph, e) arrives later for uncorrupted party
Ph. However, this does not influence the UC security of
IBE, because c = e(ID,m) in the ideal world is the same as
c = e(ID,m) in the real world. (i.e., Z cannot distinguish
two worlds.)

Upon receiving a request from party D to decrypt ci-
phertext c encrypted for ID ID, FIBE first checks if there
are records (ID,D) in ID-Reg (i.e., D is the decryptor) and
(m, c, ID) in Plain-Cipher for some m. If so, then it re-
turns m as the decrypted value. This guarantees perfectly
correct decryption for messages that were encrypted via
this instance of FIBE. If (ID,D) is not recorded in ID-
Reg or (ID,D, d̃ID, corrupted) is not recorded, this means
that D has not extracted a private key for ID. Accord-
ingly, FIBE returns an error message. If T is corrupted
and (ID,D, d̃ID, corrupted) is recorded then this means that
corrupted T may have sent the decryption algorithm which
includes a (might be inappropriate) private key, so return
(Plaintext, sid, d̃ID(c)) to D. If no (m, c, ID) record exists
for any m, this means that c was not generated legitimately
via this instance of FIBE, so no correctness guarantee is pro-
vided, and FIBE returns the value d(c, x(ID)). In IBE, multi-
ple users may extract their private keys from a single master
key, so single instance of FIBE should deal with multiple de-
cryptors.

3.2 UC-Secure IBE is Equivalent to IND-ID-CCA2-
Secure IBE

Next, we present a protocol that UC-realizes FIBE. Let Σ =
(Set,Xtr,Enc,Dec) be an identity based encryption scheme.
We define protocol πΣ that is constructed from Σ and has the
same interface with the environment as FIBE.

protocol πΣ.

Setup: Upon input (Setup, sid, T ) within some setup party
T , T obtains the system parameters PK and master-
key MK by running algorithm Set(·) and sets x =
Xtr(PK,MK, ·), e = Enc(PK, ·, ·), d = Dec(PK, ·, ·).
It then outputs (Encryption Algorithm, sid, e).

Extract: Upon input (Extract, sid, ID,D) within some
party D, D sends an extraction request for ID to T . If



266
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.1 JANUARY 2008

ID � N or T has extracted the private key for the same
ID, dkID = x(ID) before, then T sends an error mes-
sage to D and D outputs an error message. Else if T
has not executed setup yet, T ignores the request. Else,
T obtains private key dkID = x(ID). T sends the private
key securely to D. If D receives the private key then D
and T output (Extracted, sid, ID,D) (See Remark 1
below for how to securely transfer.) If D does not re-
ceive the private key then it outputs an error message.

Encrypt: Upon input (Encrypt, sid,m, ID, e′) within some
party E, if m � M or ID � N, E outputs an error mes-
sage. Else, E obtains ciphertext c = e′(ID,m) and out-
puts (Ciphertext, sid, c). (Note that it does not nec-
essarily hold that ID is E’s)

Decrypt: Upon input (Decrypt, sid, c, ID′) within D, if
ID′ � ID or D does not have private key dkID yet, out-
puts not-recorded. Else, D obtains m = d(c, dkID)
and outputs (Plaintext, sid,m).

Remark 1. (On the communication between the setup party
and the decryptor)

IBE is specified by four algorithms which are locally exe-
cuted. The procedure to send and receive keys is outside of
the definition of the IBE scheme. In order to realize a secure
communication mechanism based on IBE, some transmis-
sion protocol must be used with IBE. The security of the
communication mechanism depends also on the security of
the transmission protocol. Our FIBE and Σ definitions do
not describe procedures to transfer keys securely, because
the aim of our paper is investigating the security of IBE, not
the communication mechanism. We consider a model that
when uncorrupted T writes the private key to D’s incoming
communication tape, the adversary can not see it. (The
adversary can see the private key when T is corrupted or D
is corrupted.)

Remark 2. (On the decryption algorithm d)

Note that decryption algorithm d does not include any se-
cret information (d = Dec(PK, ·, ·) does not include mas-
ter key MK and private key dkID). It includes only system
parameters like encryption algorithm e. When setup party
T is corrupted, T might not output d at Setup. However,
corrupted T might output (possibly inappropriate) private
key dk at Extract. This means, D can decrypt ciphertexts
by the (possibly inappropriate) private key. For this case,
in the ideal world, FIBE receives decryption algorithm d̃ID

which may include incorrect private keys from the adver-
sary. (d̃ID = Dec(PK, ·, d̃kID), where ˜dkID might be an in-
correct private key)

Remark 3. (On the extraction by corrupted decryptor)

Note that even when decryptor D is corrupted, uncorrupted
setup party T executes extraction appropriately.

Security against adaptive adversaries.

Recall that, even in the case of FPKE, when the adversary is

allowed to corrupt parties during the course of the computa-
tion, and obtain their internal state, realizing FPKE is a very
hard problem [8]. The reason is as follows: If Z is allowed
to corrupt adaptively, Z makes uncorrupted party E gener-
ate ciphertext c of message m for ID ID whose decryptor
D is uncorrupted. Z then corrupts D and can distinguish
whether c = e(ID, µ) or c = e(ID,m) ((S,FIBE) or (A, πΣ))
by obtaining corrupted D’s internal states.

Theorem 3.1: πΣ UC-realizes FIBE with respect to non-
adaptive adversaries if and only if IBE scheme Σ is IND-
ID-CCA2-secure.

Proof. (“only if” part)

We prove that if Σ is not IND-ID-CCA2-secure, then πΣ does
not UC-realize FIBE. In more detail, assuming that there ex-
ists adversary G that can break Σ in the sense of IND-ID-
CCA2 with non-negligible probability (i.e., Advind-id-cca2

Σ,G >
ν(k)), we prove that we can construct environment Z and
real life adversary A such that for any ideal process adver-
sary (simulator) S,Z can tell with non-negligible probabil-
ity whether (S,FIBE) or (A, πΣ) by using adversary G. Z
proceeds as follows:

1. Activates party T with (Setup, sid, T ) and obtains en-
cryption algorithm e (and system parameters).

2. Hands e to G and plays the role of XO1 (the extraction
oracle as in Preliminaries), EO1 (the encryption ora-
cle), and DO1 (the decryption oracle) for adversary G
in the IND-ID-CCA2 game.

3. Obtains (ID∗,m0,m1) from G. ID∗ is the ID G attacks.
4. If Z has not activated D with (Extract, sid, ID∗,D)

yet, it does so and obtains (Extracted, sid, ID∗,D).

5. Chooses random bit b
U← {0, 1}, selects an arbitrary

party E(� D), activates E with (Encrypt, sid,mb, ID∗,
e) and obtains c∗.

6. Hands c∗ to G as the target ciphertext.
7. Plays the role of XO2, EO2, and DO2 for adversary

G in the IND-ID-CCA2 game, and obtains guess b′ ∈
{0, 1}.

8. Outputs 1 if b = b′, otherwise outputs 0 and halts.

Notice that we consider non-adaptive adversary case. The
corrupted parties are denoted P̃1, . . . , P̃t. In step 2, the ad-
versary issues queries q1, . . . , qm where query ql is one of:

1. Extraction query 〈IDl〉. If this is the x-th extraction,
Z activates P̃x with (Extract, sid, IDl, P̃x) to obtain
private key dkIDl corresponding to public key IDl from
corrupted P̃x. When (Extracted, sid, IDl, P̃x) is out-
put, private key dkIDl is transferred to P̃x in the real
world. So Z can obtain dkIDl from corrupted P̃x. In
the ideal world, Z can do so as in the real world, be-
cause simulator S generates master-key and extraction
algorithm x when T is activated with (Setup, sid, T )
and uses simulated copy of real life adversary A. In
both cases, Z can hand correct private key dkIDl to G.
IfZ cannot obtain the private key (i.e., S did not simu-
late the private key),Z can easily decide that the world



NISHIMAKI et al.: UNIVERSALLY COMPOSABLE IDENTITY-BASED ENCRYPTION
267

it is interacting with is the ideal world.
2. Decryption query 〈IDl, cl〉. If this is the first decryption

query for IDl, Z selects a new uncorrupted party, Py,
and activates Py with (Extract, sid, IDl, Py) and then
activates Py with (Decrypt, sid, cl, IDl). Otherwise Z
activates P′y with (Decrypt, sid, cl, IDl), where P′y is
the processZ activated T with (Extract, sid, IDl, P′y).
WhenZ receives (Plaintext, sid, vl), it hands vl to G.

These queries may be asked adaptively, that is, each query
ql may depend on the replies to q1, . . . , ql−1. In step 7, the
adversary issues more queries qm+1, . . . , qn where query ql

is one of:

1. Extraction query 〈IDl〉 where IDl � ID∗. Z responds
as in step 2.

2. Decryption query 〈IDl, cl〉 � 〈ID∗, c∗〉. Z responds as
in step 2.

These queries may be asked adaptively as in step 2.
When Z interacts with A and πΣ, Z obtains c∗ =

Enc(PK, ID∗,mb) in Step 6. G can break IND-ID-CCA2
security with non-negligible advantage Advind-id-cca2

Σ,G > ν(k).
Pr[Z → 1|Z ↔ REAL] denotes the probability that Z out-
puts 1 whenZ interacts withA and πΣ.

Pr[Z → 1|Z ↔ REAL]
= Pr[mb = m0] Pr[b′ = 0|c∗ = Enc(PK, ID∗,m0)]

+ Pr[mb = m1] Pr[b′ = 1|c∗ = Enc(PK, ID∗,m1)]

=
1
2

(1 − Pr[b′ = 1|c∗ = Enc(PK, ID∗,m0)])

+
1
2

Pr[b′ = 1|c∗ = Enc(PK, ID∗,m1)]

=
1
2
+

1
2

(Pr[Expind-id-cca2-1
Σ,G (k) = 1]

− Pr[Expind-id-cca2-0
Σ,G (k) = 1])

>
1
2
+

1
2
ν(k)

In contrast, whenZ interacts with the ideal process for
FIBE and any adversary, the view of the instance of G within
Z is statistically independent of b, thus in this case b = b′
with probability exactly one half. To see why G’s view is
independent of b, recall that the view of G consists of the
target ciphertext c∗ and the decryptions of all ciphertexts
generated by G (except for the decryption of c∗). However,
c∗ = e(ID∗, µ) for fixed message µ is independent of b. Fur-
thermore, all ciphertexts cl generated by G are independent
of b, thus decryption d(cl, dkIDl ) is independent of b.

Pr[Z → 1|Z ↔ IDEAL] denotes the probability thatZ
outputs 1 when Z interacts with S in the ideal process for
FIBE.

Pr[Z → 1|Z ↔ IDEAL]
= Pr[mb = m0] Pr[b′ = 0|c∗ = e(ID∗, µ)]
+ Pr[mb = m1] Pr[b′ = 1|c∗ = e(ID∗, µ)]

=
1
2

(1 − Pr[b′ = 1|c∗ = e(ID∗, µ)]

+ Pr[b′ = 1|c∗ = e(ID∗, µ)])

=
1
2

Thus, Pr[Z → 1|Z ↔ REAL] − Pr[Z → 1|Z ↔
IDEAL] > 1

2ν(k). Therefore, Z can tell whether (S,FIBE)
or (A, πΣ) with non-negligible probability.

(“if” part)

We show that if πΣ does not UC-realize FIBE, then Σ is not
IND-ID-CCA2-secure. In more detail, we assume for con-
tradiction that there is real life adversaryA such that for any
ideal process adversary S there exists environment Z that
can tell whether (S,FIBE) or (A, πΣ). We then show that
there exists an IND-ID-CCA2 attacker G against Σ usingZ.

First, we show thatZ can distinguish whether (S,FIBE)
or (A, πΣ) only when setup party T , some encryptor E and
some decryptor D are not corrupted. Since we are dealing
with non-adaptive adversaries, there are following cases;

• Case A: For every triple (T, E,D), some of the elements
are corrupted. There are 6 cases; Case 1: setup party
T is corrupted (throughout the protocol), Case 2: En-
cryptor E is corrupted (throughout the protocol), Case
3: Decryptor D is corrupted (throughout the protocol),
Case 4: T and E are corrupted (throughout the proto-
col), Case 5: T and D are corrupted (throughout the
protocol), Case 6: D and E are corrupted (throughout
the protocol),

• Case B: There is an uncorrupted triple (T, E,D). That
is, T , some E and some D are uncorrupted.

In Case 1, we can construct simulator S such that noZ can
distinguish whether(S,FIBE) or (A, πΣ) as follows:

1. When Z sends (Setup, sid, T ) to corrupted party T
(i.e., S), S receives the message and sends it to FIBE

on behalf of T and the simulated copy ofA, which re-
turns a reply message (which may be ⊥) to S. When S
receives (Setup, sid, T ) from FIBE, S sends A’s reply
to FIBE. S sendsA’s reply toZ.

2. WhenZ sends (Extract, sid, ID,D) to D, D forwards
it to FIBE. When S receives (Corrupted Extract,
sid, ID,D) from FIBE, S sends it to the simu-
lated copy of A, which returns a reply message
(which may be ⊥) to S. If A’s reply is de-
cryption algorithm d̃ID (which may be inappropri-
ate), S sends (Corrupted Decrypt, sid, ID, d̃ID) to
FIBE. FIBE records (ID,D, d̃ID, corrputed) and re-
turns (Extracted, sid, ID,D). If A’s reply is ⊥, S
sends it to FIBE and FIBE returns an error message.

3. When Z sends (Encrypt, sid,m, ID, e′) to E, E for-
wards it to FIBE. FIBE generates c = e′(ID,m) and re-
turns (Ciphertext, sid, c) to E, since T is corrupted.

4. When Z sends (Decrypt, sid, c, ID) to D, D forwards
it to FIBE. If decryption algorithm in step 2, FIBE re-
turns (Plaintext, sid, d̃ID(c)). Otherwise, FIBE out-
puts not-recorded, because (ID,D, d̃ID, corrputed)



268
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.1 JANUARY 2008

is not recorded.

In this case,Z cannot distinguish whether (S,FIBE) or
(A, πΣ), because the message returned by S (using A) as T
in the ideal world is the same as that returned by A as T in
the real world, and (Ciphertext, sid, c) returned by FIBE

is exactly the same as that returned by E in the real world,
and not-recorded or (Plaintext, sid, d̃ID(c)) returned by
FIBE is exactly the same as that returned by D in the real
world.

In Case 2, we can construct simulator S such that noZ
can distinguish whether (S,FIBE) or (A, πΣ) as follows:

1. When Z sends (Setup, sid, T ) to T , T forwards it
to FIBE. FIBE sends (Setup, sid, T ) to S, S com-
putes (PK,MK) by running algorithm Set(), and
generates x, e and d, where x = Xtr(PK,MK, ·),
e = Enc(PK, ·, ·) and d = Dec(PK, ·, ·). S returns
(Algorithms, sid, x, e, d) to FIBE.

2. When Z sends (Extract, sid, ID,D) to D, D for-
wards it to FIBE. FIBE records (ID,D) and returns
(Extracted, sid, ID,D).

3. When Z sends (Encrypt, sid,m, ID, e′) to corrupted
party E (i.e., S), S receives the message and sends it
to the simulated copy ofA, which replies to S. S then
returnsA’s reply (which may be ⊥) toZ.

4. When Z sends (Decrypt, sid, c, ID) to D, D forwards
it to FIBE. FIBE then returns (Plaintext, sid, d(c,
x(ID))), since E (i.e., S) sent no (Encrypt, sid,m, ID,
e) to FIBE, which records nothing as (m, c, ID).

In this case,Z cannot distinguish whether (S,FIBE) or
(A, πΣ), because the message returned by S (using A) as E
in the ideal world is the same as that returned by A as E
in the real world, and (Encryption Algorithm, sid, e) re-
turned by FIBE is exactly the same as that returned by T in
the real world, (Extracted, sid, ID,D) returned by FIBE is
exactly the same as that returned by T in the real world,
and (Plaintext, sid, d(c, x(ID))) returned by FIBE is ex-
actly the same as that returned by D in the real world.

In Case 3, we can construct simulator S such that noZ
can distinguish whether (S,FIBE) or (A, πΣ) as follows:

1. When Z sends (Setup, sid, T ) to T , T forwards it
to FIBE. FIBE sends (Setup, sid, T ) to S, S com-
putes (PK,MK) by running algorithm Set(), and
generates x, e and d, where x = Xtr(PK,MK, ·),
e = Enc(PK, ·, ·) and d = Dec(PK, ·, ·). S returns
(Algorithms, sid, x, e, d) to FIBE.

2. When Z sends (Extract, sid, ID,D) to corrupted D
(i.e., S), S sends it to the simulated copy of A. If
A requests the private key, forwards it to FIBE and re-
turns dkID = x(ID). FIBE records (ID,D) and returns
(Extracted, sid, ID,D).

3. When Z sends (Encrypt, sid,m, ID, e′) to E, E for-
wards it to FIBE. FIBE generates c = e′(ID,m) and re-
turns (Ciphertext, sid, c) to E, since D is corrupted.

4. WhenZ sends (Decrypt, sid, c, ID) to corrupted party
D (i.e., S), S sends (Decrypt, sid, c, ID) to A. A re-

turns a reply (which may be ⊥) to S, which forwards
A’s reply toZ.

In this case,Z cannot distinguish whether (S,FIBE) or
(A, πΣ), because the message returned by S (using A) as D
in the ideal world is the same as that returned by A as D in
the real world, (Encryption Algorithm, sid, e) returned
by FIBE is exactly the same as that returned by T in the real
world, and (Extracted, sid, ID,D) returned by FIBE is ex-
actly the same as that returned by D in the real world, and
(Ciphertext, sid, c) returned by FIBE is exactly the same
as that returned by E in the real world.

In Case 4, we can construct simulator S such that noZ
can distinguish whether (S,FIBE) or (A, πΣ) as follows:

1. When Z sends (Setup, sid, T ) to corrupted party T
(i.e., S), S receives the message and sends it to FIBE

on behalf of T and the simulated copy ofA, which re-
turns a reply message (which may be ⊥) to S. When S
receives (Setup, sid, T ) from FIBE, S sends A’s reply
to FIBE. S sendsA’s reply toZ.

2. WhenZ sends (Extract, sid, ID,D) to D, D forwards
it to FIBE. When S receives (Corrupted Extract,
sid, ID,D) from FIBE, S sends it to the simu-
lated copy of A, which returns a reply message
(which may be ⊥) to S. If A’s reply is de-
cryption algorithm d̃ID (which may be inappropri-
ate), S sends (Corrupted Decrypt, sid, ID, d̃ID) to
FIBE. FIBE records (ID,D, d̃ID, corrputed) and re-
turns (Extracted, sid, ID,D). If A’s reply is ⊥, S
sends it to FIBE and FIBE returns an error message.

3. When Z sends (Encrypt, sid,m, ID, e′) to corrupted
party E (i.e., S), S receives the message and sends it
to the simulated copy ofA, which replies to S. S then
returnsA’s reply (which may be ⊥) toZ.

4. When Z sends (Decrypt, sid, c, ID) to D, D for-
wards it to FIBE. If the simulated copy of A out-
put the decryption algorithm in step 2, FIBE returns
(Plaintext, sid, d̃ID(c)). Otherwise, FIBE outputs
not-recorded, because (ID,D, d̃ID, corrputed) is
not recorded.

In this case, Z cannot distinguish whether (S,FIBE)
or (A, πΣ), because the message returned by S (using A)
as T and E in the ideal world is the same as that returned
by A as T and E in the real world, and not-recorded
or (Plaintext, sid, d̃ID(c)) returned by FIBE is exactly the
same as that returned by D in the real world.

In Case 5, we can construct simulator S such that noZ
can distinguish whether (S,FIBE) or (A, πΣ) as follows:

1. When Z sends (Setup, sid, T ) to corrupted party T
(i.e., S), S receives the message and sends it to FIBE

on behalf of T and the simulated copy ofA, which re-
turns a reply message (which may be ⊥) to S. When S
receives (Setup, sid, T ) from FIBE, S sends A’s reply
to FIBE. S sendsA’s reply toZ.

2. When Z sends (Extract, sid, ID,D) to corrupted D
(i.e., S), S sends it to the simulated copy of A. If A



NISHIMAKI et al.: UNIVERSALLY COMPOSABLE IDENTITY-BASED ENCRYPTION
269

requests the private key, forwards it to FIBE. When S
receives (Corrupted Extract, sid, ID,D) from FIBE,
S sends it to the simulated copy of A, which returns a
reply message (which may be ⊥) to S. If A’s reply
is decryption algorithm d̃ID (which may be inappropri-
ate), S sends (Corrupted Decrypt, sid, ID, d̃ID) to
FIBE. FIBE records (ID,D, d̃ID, corrupted) and re-
turns (Extracted, sid, ID,D). If A’s reply is ⊥, S
sends it to FIBE and FIBE returns an error message.

3. When Z sends (Encrypt, sid,m, ID, e′) to E, E for-
wards it to FIBE. FIBE generates c = e′(ID,m) and
returns (Ciphertext, sid, c) to E, since T (i.e., S) sent
no (Setup, sid, T ) to FIBE, which records nothing as
encryption algorithm e.

4. WhenZ sends (Decrypt, sid, c, ID) to corrupted party
D (i.e., S), S sends (Decrypt, sid, c, ID) to A. A re-
turns a reply (which may be ⊥) to S, which forwards
A’s reply toZ.

In this case,Z cannot distinguish whether (S,FIBE) or
(A, πΣ), because the message returned by S (using A) as
T and D in the ideal world is the same as that returned by
A as T and D in the real world, and (Ciphertext, sid, c)
returned by FIBE is exactly the same as that returned by E in
the real world.

In Case 6, we can construct simulator S such that noZ
can distinguish whether (S,FIBE) or (A, πΣ) as follows:

1. When Z sends (Setup, sid, T ) to T , T forwards it to
FIBE. FIBE sends (Setup, sid, T ) to S, S computes
(PK,MK) by running algorithm Set, and generates x, e
and d, where x = Xtr(PK,MK, ·), e = Enc(PK, ·, ·) and
d = Dec(PK, ·, ·). S returns (Algorithms, sid, x, e, d)
to FIBE.

2. When Z sends (Extract, sid, ID,D) to corrupted D
(i.e., S), S sends it to the simulated copy of A. If
A requests the private key, forwards it to FIBE and re-
turns dkID = x(ID). FIBE records (ID,D) and returns
(Extracted, sid, ID,D).

3. When Z sends (Encrypt, sid,m, ID, e′) to corrupted
party E (i.e., S), S receives the message and sends it
to the simulated copy ofA, which replies to S. S then
returnsA’s reply (which may be ⊥) toZ.

4. WhenZ sends (Decrypt, sid, c, ID) to corrupted party
D (i.e., S), S sends (Decrypt, sid, c, ID) to A. A re-
turns a reply (which may be ⊥) to S, which forwards
A’s reply toZ.

In this case, Z cannot distinguish whether (S,FIBE)
or (A, πΣ), because the message returned by S (us-
ing A) as E and D in the ideal world is the same
as that returned by A as E and D in the real world,
(Encryption Algorithm, sid, e) returned by FIBE is ex-
actly the same as that returned by D in the real world,
and (Extracted, sid, ID,D) returned by FIBE is exactly the
same as that returned by T in the real world.

Thus, Z cannot distinguish (S,FIBE) or (A, πΣ) in
Cases 1, 2, 3, 4, 5, and 6. Hereafter, we consider only Case

B.
Recall that A takes three types of messages from Z:

either to corrupt parties, or to report on messages sent in
the protocol, or to deliver some messages. There are no
party corruption instructions, since we are dealing with non-
adaptive adversaries. However, Z may request some cor-
rupted parties to reveal their private keys, so A need report
private keys toZ.

Thus, the activity of S is to provide the algorithms to
FIBE and to report private keys. Since Z succeeds in distin-
guishing for any S, it also succeeds for the following spe-
cific S. Simulator S acts as follows:

When S receives message (Setup, sid, T ) from FIBE,
it runs setup algorithm Set, obtains system parameters PK
and master-key MK, and returns x = Xtr(PK,MK, ·), e =
Enc(PK, ·, ·) and d = Dec(PK, ·, ·) to FIBE.

WhenZ requests private keys, S returns them by using
extraction algorithm x = Xtr(PK,MK, ·).

We consider the case where setup party T , some en-
cryptor E and some decryptor D are uncorrupted and as-
sume for contradiction that there is environment Z that can
distinguish whether (S,FIBE) or (A, πΣ). We now prove that
we can construct adversary G that breaks IND-ID-CCA2 se-
curity by using environment Z. More precisely, we assume
that there is real life adversaryA such that for any ideal pro-
cess adversary S, there exists environment Z such that for
fixed value k of security parameter and fixed input z forZ,

|IDEALFIBE,S,Z(k, z) − REALπΣ,A,Z(k, z)| > ν(k)

We then show that there exists Gh whose advantage
Advind-id-cca2

Σ,Gh
(k) > ν(k)/l in the IND-ID-CCA2 game, where

l is the total number of messages that were encrypted
by uncorrupted party’s ID (Extract has already executed)
throughout the running of the system and h ∈ {1, . . . , l}. Gh

is given system parameters PK, and is allowed to queryXOi,
EOi and DOi (as in Preliminaries). Gh runs Z on the fol-
lowing simulated interaction with a system running πΣ/FIBE.
Let (mj, IDj) denote the jth pair of message and ID that Z
activates some party with (Encrypt, sid,mj, IDj, e) in this
simulation. Note that IDj is uncorrupted party’s ID and the
private key for IDj has already extracted.

1. WhenZ activates some party T with input (Setup, sid,
T ), Gh lets T output value e calculated from PK.

2. When Z activates some party P with input (Extract,
sid, ID, P), Gh lets P output message (Extracted, sid,
ID, P) from Gh’s input. If P is corrupted and Z re-
quests P’s private key, then Gh queries XOi on ID, ob-
tains value u and lets P return u to Z. This is per-
fect simulation, so Z cannot distinguish (S,FIBE) or
(A, πΣ) in this step.

3. For the first h − 1 times that Z asks encryptor E to
encrypt some message, mj, Gh lets E return c j =

e(IDj,mj).
4. The h-th time that Z asks E to encrypt message, mh

by ID∗, Gh queries encryption oracle EOi with the pair
of messages (mh, µ), where µ ∈ M is the fixed message,



270
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.1 JANUARY 2008

and obtains target ciphertext ch. It then hands ch toZ as
the encryption of mh. That is, ch = Enc(PK, ID∗,mh)
(b = 0) or ch = Enc(PK, ID∗, µ) (b = 1).

5. For the remaining l − h times that Z asks E to
encrypt some message, mj, Gh lets E return c j =

Enc(PK, IDj, µ).
6. Whenever decryptor D is activated with input

(Decrypt, sid, c, ID) where c = c j and ID = IDj for
some j, Gh lets D return the corresponding plaintext
mj. If c is different from all c j’s and IDj is extracted,
Gh queries DOi on (ID, c), obtains value v, and lets D
return v to Z. If c is different from all c j’s and IDj is
not extracted, Gh lets D output not-recorded. This is
perfect simulation, so Z cannot distinguish (S,FIBE)
or (A, πΣ) in this step.

7. When Z halts, Gh outputs whatever Z outputs and
halts.

Notice that Z cannot distinguish (S,FIBE) or (A, πΣ) by
activating E with (Encrypt, sid,m, ID, e) before activating
T with (Extract, sid, ID, Ph), because in this case, c =
e(ID,m) in both the real and the ideal world.

We apply a standard hybrid argument for analyzing the
success probability of Gh. For j ∈ {0, . . . , l}, let Env j be
an event that Z interacts with S in the ideal process, with
the exception that the first j ciphertexts are computed as an
encryption of the real plaintexts, rather than encryptions of
µ. The replies toZ from setup party T and decryptor D are
the same as those shown in step 1, 2 and 6 above. Let Hj be
Pr[Z → 1|Env j].

Notice that in steps 2 and 6,Z cannot tell whether it is
interacting with A and πΣ or with S in the ideal process for
FIBE, because Gh offers perfect simulation.

It is easy to see that H0 is identical to the probability
thatZ outputs 1 in the ideal process, and that Hl is identical
to the probability that Z outputs 1 in the real life model.
Furthermore, in a run of Gh, if value ch that Gh obtains from
its encryption oracle is encryption mh, the probability that
Z outputs 1 is identical to Hh−1. If ch is an encryption of µ,
the probability that Z outputs 1 is identical to Hh. Details
follow:

H0 = IDEALFIBE,S,Z(k, z)

Hl = REALπΣ,A,Z(k, z)

Hh = Pr[Gh → 1|ch = Enc(PK, ID∗, µ)]
Hh−1 = Pr[Gh → 1|ch = Enc(PK, ID∗,mh)]

l∑

i=1

|Hi−1 − Hi| ≥ |
l∑

i=1

(Hi−1 − Hi)|

= |H0 − Hl|
= |IDEALFIBE,S,Z(k, z) − REALπΣ,A,Z(k, z)|
> ν(k)

Therefore, there exists some h ∈ {1, . . . , l} such that |Hh−1 −
Hh| > ν(k)/l. Here, w.l.o.g, let Hh−1 − Hh > ν(k)/l, since if
Hh −Hh−1 > ν(k)/l forZ, we can obtain Hh−1 −Hh > ν(k)/l

forZ∗, whereZ∗ outputs the opposite ofZ’s output bit.
We have the advantage of adversary Gh as follows:

Advind-id-cca2
Σ,Gh

(k)

= Pr[Expind-id-cca2-1
Σ,A (k) = 1]

− Pr[Expind-id-cca2-0
Σ,A (k) = 1]

= Pr[Gh → 1|ch = Enc(PK, ID∗, µ)]
− Pr[Gh → 1|ch = Enc(PK, ID∗,mh)]

= Hh − Hh−1 > ν(k)/l

That is, Gh has non-negligible advantage in k since l is poly-
nomially bounded in k. �

References

[1] N. Attrapadung, Y. Cui, D. Galindo, G. Hanaoka, I. Hasuo, H. Imai,
K. Matsuura, P. Yang, and R. Zhang, “Relations among notions of
security for identity based encryption schemes,” Proc. LATIN’06,
3887 of LNCS, pp.130–141, 2006.

[2] B. Barak, R. Canetti, Y. Lindell, R. Pass, and T. Rabin, “Secure
computation without authentication,” Proc. CRYPTO’05, 3621 of
LNCS, pp.361–377, 2005.

[3] B. Barak, R. Canetti, J.B. Nielsen, and R. Pass, “Universally com-
posable protocols with relaxed set-up assumptions,” Proc. FOCS’04,
pp.186–195, 2004.

[4] D. Boneh and X. Boyen, “Efficient selective-id secure identity based
encryption without random oracles,” Proc. EUROCRYPT’04, 3027
of LNCS, pp.223–238, 2004.

[5] D. Boneh and X. Boyen, “Secure identity based encryption without
random oracles,” Proc. CRYPTO’04, 3152 of LNCS, pp.443–459,
2004.

[6] D. Boneh and M. Franklin, “Identity-based encryption from the Weil
pairing,” Proc. CRYPTO’01, 2139 of LNCS, pp.213–229, 2001.

[7] D. Boneh and J. Katz, “Improved efficiency for cca-secure cryp-
tosystems built using identity based encryption,” Proc. CT-RSA’05,
3376 of LNCS, pp.87–103, 2005.

[8] R. Canetti, “Universally composable security: A new paradigm for
cryptograpic protocols,” Proc. FOCS’01, pp.136–145, 2001. Cur-
rent Full Version Available at Cryptology ePrint Archive, Report
2000/067 http://eprint.iacr.org/

[9] R. Canetti, “Universally composable signatures, certification, and
authenticated communication,” Proc. 17th Computer Security Foun-
dations Workshop, pp.219–233, 2004.

[10] R. Canetti and M. Fischlin, “Universally composable commit-
ments,” Proc. CRYPTO’01, 2139 of LNCS, pp.19–40, 2001.

[11] R. Canetti, S. Halevi, and J. Katz, “A forward-secure public-key en-
cryption scheme,” Proc. EUROCRYPT’03, 2656 of LNCS, pp.255–
271, 2003.

[12] R. Canetti, S. Halevi, and J. Katz, “Chosen-ciphertext security from
identity-based encryption,” Proc. EUROCRYPT’04, 3027 of LNCS,
pp.207–222, 2004.

[13] R. Canetti and H. Krawczyk, “Universally composable notions of
key exchange and secure channels,” Proc. EUROCRYPT’02, 2332
of LNCS, pp.337–351, 2002.

[14] R. Canetti, E. Kushilevitz, and Y. Lindell, “On the limitations of uni-
versally composable two-party computation without set-up assump-
tions,” Proc. EUROCRYPT’03, 2656 of LNCS, pp.68–86, 2003.

[15] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai, “Universally
composable two-party and multi-party secure computation,” Proc.
STOC’02, pp.494–503, 2002.

[16] R. Canetti and T. Rabin, “Universal composition with joint state,”
Proc. CRYPTO’03, 2729 of LNCS, pp.265–281, 2003.

[17] I. Damgård and J.B. Nielsen, “Perfect hiding and perfect binding



NISHIMAKI et al.: UNIVERSALLY COMPOSABLE IDENTITY-BASED ENCRYPTION
271

universally composable commitment schemes with constant expan-
sion factor,” Proc. CRYPTO’02, 2442 of LNCS, pp.581–596, 2002.

[18] A. Datta, A. Derek, J.C. Mitchell, A. Ramanathan, and A. Scedrov,
“Games and the impossibility of realizable ideal functionality,” Proc.
of TCC’06, 3876 of LNCS, pp.360–379, 2006.

[19] W. Nagao, Y. Manabe, and T. Okamoto, “On the equivalence of sev-
eral security notions of key encapsulation mechanism,” Cryptology
ePrint Archive, Report 2006/268, 2006. http://eprint.iacr.org/

[20] M. Prabhakaran and A. Sahai, “New notions of security: Achiev-
ing universal composability without trusted setup,” Proc. STOC’04,
pp.242–251, 2004.

[21] A. Shamir, “Identity-based cryptosystems and signature schemes,”
Proc. CRYPTO’84, 196 of LNCS, pp.47–53, 1984.

[22] B. Waters “Efficient identity-based encryption without random ora-
cles,” Proc. EUROCRYPT’05, 3494 of LNCS, pp.114–127, 2005.

Ryo Nishimaki received the B.E., M.I.,
degrees from Kyoto University, Kyoto Japan in
2005 and 2007, respectively. In 2007, he joined
NTT Information Sharing Platform Laboratories
and he is also a doctor course student of Tokyo
Institute of Technology. His research interests
are theory of cryptography and its relation to
computational complexity.

Yoshifumi Manabe received the B.E.,
M.E., and Dr.E. degrees from Osaka University,
Osaka, Japan, in 1983, 1985, and 1993, respec-
tively. In 1985, he joined Nippon Telegraph and
Telephone Corporation. Currently, he is a senior
research scientist, supervisor of NTT Commu-
nication Science Laboratories. His research in-
terests include distributed algorithms, cryptog-
raphy, and operating systems. He has been a
guest associate professor of Kyoto University
since 2001. He is a member of ACM, IPSJ, and

IEEE.

Tatsuaki Okamoto received the B.E., M.E.,
and Dr.E. degrees from the University of Tokyo,
Tokyo, Japan, in 1976, 1978, and 1988, respec-
tively. He is a Fellow of NTT Information Shar-
ing Platform Laboratories. He is presently en-
gaged in research on cryptography and informa-
tion security. Dr. Okamoto is a director of the
Japan Society for Industrial and Applied Math-
ematics, and a guest professor of Kyoto Univer-
sity.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


