
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.1 JANUARY 2016
73

PAPER Special Section on Cryptography and Information Security

Packing Messages and Optimizing Bootstrapping in GSW-FHE∗

Ryo HIROMASA†a), Nonmember, Masayuki ABE††b), Senior Member, and Tatsuaki OKAMOTO††c), Fellow

SUMMARY We construct the first fully homomorphic encryption
(FHE) scheme that encrypts matrices and supports homomorphic matrix
addition and multiplication. This is a natural extension of packed FHE and
thus supports more complicated homomorphic operations. We optimize the
bootstrapping procedure of Alperin-Sheriff and Peikert (CRYPTO 2014) by
applying our scheme. Our optimization decreases the lattice approximation
factor from Õ(n3) to Õ(n2.5). By taking a lattice dimension as a larger poly-
nomial in a security parameter, we can also obtain the same approximation
factor as the best known one of standard lattice-based public-key encryp-
tion without successive dimension-modulus reduction, which was essential
for achieving the best factor in prior works on bootstrapping of standard
lattice-based FHE.
key words: lattice-based cryptography, fully homomorphic encryption,
bootstrapping, SIMD operations

1. Introduction

Fully homomorphic encryption (FHE) allows us to evalu-
ate any function over encrypted data by only using public
information. This can be used, for example, to outsource
computations to remote servers without compromising pri-
vacy. Since the breakthrough work by Gentry [1], [2], many
different varieties of FHE have been proposed [3]–[9]. To
date, the fastest (and simplest) FHE based on the standard
lattice assumption is the one by Gentry, Sahai, and Waters
[9]. (hereafter, referred to as GSW-FHE). However, it is re-
quired to take heavy cost for evaluating a large number of
ciphertexts. The way to deal with this issue is to pack mul-
tiple messages into one ciphertext.

Packing messages allows us to apply single-instruction-
multiple data (SIMD) homomorphic operations to all en-
crypted messages. In the case where a remote server stores
encrypted data and we want to retrieve certain data from
this server, we first apply the equality function to every
encrypted data. If the stored data have been packed into
one ciphertext, we can do that by only one homomorphic
evaluation of the equality function. Smart and Vercautren

Manuscript received March 23, 2015.
Manuscript revised June 27, 2015.
†The author is with the Graduate School of Informatics, Kyoto

University, Kyoto-shi, 606-8501 Japan.
††The authors are with NTT Secure Platform Laboratories, NTT

Corporation, Musashino-shi, 180-8585 Japan.
∗A preliminary version of this paper appears in the 18th Inter-

national Conference on Practice and Theory in Public-Key Cryp-
tography.

a) E-mail: hiromasa@ai.soc.i.kyoto-u.ac.jp (Corresponding au-
thor)

b) E-mail: abe.masayuki@lab.ntt.co.jp
c) E-mail: okamoto.tatsuaki@lab.ntt.co.jp

DOI: 10.1587/transfun.E99.A.73

[10], for the first time, showed that applying the Chinese
reminder theorem (CRT) to number fields partitions the
message space of the Gentry’s FHE [1], [2] scheme into
a vector of plaintext slots. On the standard lattice-based
FHE schemes, Brakerski, Gentry, and Halevi [11] used the
method of [12], which described a way to construct packed
Regev’s encryption [13], to pack messages in the FHE vari-
ants [4], [6], [7] of [13]. In this paper, we construct a matrix
variant of [9] (whose security is also based on the standard
lattice assumption) to implement SIMD homomorphic op-
erations, and describe how to bring out the potential of our
scheme: specifically optimizing bootstrapping.

The bootstrapping technique [1], [2] is currently the
only way to go from limited amount of homomorphism to
unlimited amount of homomorphism. The limited nature is
caused by noise terms included in ciphertexts of all known
FHE, which are needed to ensure security. Since homomor-
phic operations increases the noise level and the noise pre-
vents us from correctly decrypting ciphertexts if the level
increases too high, it is required to consider methods that
reduce the noise. The bootstrapping technique is the one of
such a methods, and achieved by homomorphically evaluat-
ing the decryption circuit of FHE.

There have recently been the significant progresses
[14], [15] in improving the bootstrapping procedure on stan-
dard lattice-based FHE. Their progresses stem from the ob-
servation that noise terms in ciphertexts of GSW-FHE grow
asymmetrically: for a parameter n (the dimension in the un-
derlying lattice assumption), the noise of multiplication be-
tween two ciphertexts with noise size e1 and e2 grows to
e1 + poly(n) · e2. For example, if we want to multiply � ci-
phertexts with the same noise size in sequence, the noise in
the result increases by a factor of � · poly(n), which is in
contrast to the noise blowup factor by a multiplication tree,
poly(n)log �. To suppress the growth in noise from the boot-
strapping procedure, the two recent developments [14], [15]
tried to sequentialize the decryption circuit.

Brakerski and Vaikuntanathan [14] transformed the de-
cryption circuit of [9] to a branching program by using the
Barrington’s theorem [16], and homomorphically evaluated
the program. Since the Barrington’s theorem can convert
the decryption circuit to a polynomial length branching pro-
gram, evaluating the program increases the noise by a factor
of poly(n). This procedure, however, has a significant draw-
back: the Barrington’s theorem generates a branching pro-
gram of large polynomial length. The scheme [14] also used
a kind of dimension leveraging technique and successive

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers

74
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.1 JANUARY 2016

dimension-modulus reduction to obtain the best approxima-
tion factor that is the same as standard lattice-based (plain)
PKE.

Unlike most previous works, Alperin-Sheriff and Peik-
ert [15] viewed the decryption as an arithmetic circuit. The
decryption of all known standard lattice-based FHE consists
of the inner product and rounding: for a ciphertext vector c
and secret key vector s, the decryption algorithm computes
�〈c, s〉�2 ∈ {0, 1} (where �·�2 is the rounding function intro-
duced later). The authors observed that the inner product in
the decryption can be expressed as a subset sum of the se-
cret key elements. The subset sum can be computed only in
the additive group, and the additive group is isomorphic to a
group of cyclic permutations. The authors rewrote the inner
product to the sequence of compositions of the cyclic per-
mutations. Since this does not use the Barrington’s theorem,
the bootstrapping procedure of [15] can refresh ciphertexts
faster and keep the noise growth in a smaller polynomial
than that of [14], but the underlying security assumption was
slightly stronger than that of [14]†. In addition, the proce-
dure of [15] was not fully sequentialized, that is, there is a
little room for sequentializing the decryption: the rounding.

1.1 Our Results

In this paper, we construct the first FHE scheme that en-
crypts matrices and supports homomorphic matrix opera-
tions. This is a natural extension of packed FHE and sup-
ports more complicated homomorphic operations. Using
this scheme, we fully sequentialize and thus optimize the
bootstrapping procedure of [15]. The result of the optimiza-
tion is described in the following:

Theorem 1. Our optimized bootstrapping scheme can be
secure assuming the hardness of approximating the standard
lattice problem to within the factor Õ(n1.5λ) on any n dimen-
sional lattices.

For 2λ hardness, we need to take n = Ω(λ). Asymp-
totically minimal selection of n = Õ(λ) leads to the approx-
imation factor Õ(n2.5) for the underlying worst-case lattice
assumption, which is smaller than Õ(n3), the factor of [15].
Using a kind of dimension leveraging technique: selecting a
larger dimension n = λ1/ε for ε ∈ (0, 1), we can also obtain
the best known approximation factor, Õ(n1.5+ε), without suc-
cessive dimension-modulus reduction, which was essential
for achieving the best factor in the prior works on bootstrap-
ping of standard lattice-based FHE.

1.2 Our Techniques

Matrix GSW-FHE. The starting point of our scheme is
the GSW-FHE scheme. In that scheme, a ciphertext of a
plaintext m ∈ {0, 1} is a matrix C ∈ Z(n+1)×N

q such that
sC = m · sG + e for a secret key vector s ∈ Zn+1

q , small

†By using successive dimension-modulus reduction, [15] can
also obtain the same approximation factor as that of [14].

noise vector e ∈ ZN , and fixed matrix G ∈ Z(n+1)×N
q . A

simple extension of the plaintext space from bits to binary
vectors cannot yield plaintext-slot-wise addition and multi-
plication. Instead, we use matrices to store binary vectors in
their diagonal entries. Actually, our construction even sup-
ports homomorphic matrix addition and multiplication that
are richer than homomorphic plaintext-slot-wise operations.

Let S ∈ Zr×(n+r)
q be a secret key matrix, B ∈ Zn×m

q be a
Learning with Errors (LWE) matrix such that SB ≈ 0, and
G ∈ Z(n+r)×N be a fixed matrix. To encrypt a square inte-
ger matrix M ∈ {0, 1}r×r, the ciphertext C ∈ Z(n+r)×N must
be of the form BR + XG for a matrix X ∈ Z(n+r)×(n+r) such
that SX = MS, and small random matrix R ∈ Zm×N . The
ciphertext C satisfies SC = E + MSG for a small noise ma-
trix E ∈ Zr×N . Homomorphic matrix addition is just matrix
addition. For example, given two ciphertexts C1 and C2, it
holds that

S(C1 + C2) = (E1 + E2) + (M1 + M2)SG.

Homomorphic matrix multiplication corresponds to a sim-
ple preimage sampling and matrix multiplication. For a ma-
trix C ∈ Z(n+r)×N

q , let G−1(C) be the function that outputs a
matrix X′ ∈ ZN×N

q such that GX′ ≡ C (mod q). If we let

X′2
R←−G−1(C2), then it holds that

SC1X′2 = (E1 + M1SG)X′2
= E1X′2 + M1E2 + M1 M2SG.

Now, the problem is how to construct a matrix X such
that SX = MS. By construction, S includes an identity ma-
trix: S = [I ‖ S′] for a matrix S′ ∈ Zr×n

q . The idea is to make
X have MS in its top rows and 0 below. This X clearly sat-
isfies the condition, but cannot publicly be computed with-
out knowing the secret key. We translate the resulting sym-
metric scheme to the asymmetric one by using the method
similar to [17], [18]. In particular, let M(i, j) ∈ {0, 1}r×r

(i, j = 1, . . . , r) be the matrix with 1 in the (i, j)-th entry
and 0 in the others. We first publish symmetric encryptions
of M(i, j) for all i, j ∈ [r]. A ciphertext for a plaintext matrix
M is publicly computed by summing up all encryptions of
M(i, j) such that the (i, j)-th entry of M is equal to 1, and us-
ing B to randomize the sum. Since the public key includes
the ciphertexts that encrypt partial information of the secret
key, security of our scheme cannot directly be proven from
the LWE assumption. The way to deal with this problem is
to introduce a circular security assumption.

Optimizing Bootstrapping of [15]. For a dimension d and
modulus q, let c ∈ {0, 1}d be the � − 1-th column of a binary
GSW-FHE ciphertext under a secret key s ∈ Zd

q. Since the
decryption algorithm of GSW-FHE computes �〈c, s〉�2 (�·�2
is the rounding function that outputs 1 if the input is close to
q/4 and 0 otherwise), and 〈c, s〉 = ∑d

i=1 cisi =
∑

i∈[d]:ci=1 si,
the decryption can be viewed as a subset sum of {si}i∈[d].
To bootstrap ciphertexts, we only have to be able to com-
pute additions in Zq homomorphically. The additive group
Z+q is isomorphic to a group of cyclic permutations, where

HIROMASA et al.: PACKING MESSAGES AND OPTIMIZING BOOTSTRAPPING IN GSW-FHE
75

x ∈ Z+q corresponds to a cyclic permutation that can be rep-
resented by an indicator vector with 1 in the x-th position.
The permutation matrix for x can be obtained from cyclic ro-
tations of its indicator vector. The addition in Z+q leads to the
composition of the permutations (i.e., the multiplication of
the corresponding permutation matrices), and the rounding
function �·�2 : Zq → {0, 1} can be computed by summing the
entries of the indicator vector corresponding to those values
in Zq.

The bootstrapping procedure of [15] consists of two
parts that compute an inner product and a rounding oper-
ation. The rounding checks equalities and computes sum-
mation. Our matrix GSW-FHE scheme allows us to rewrite
the bootstrapping procedure except for the summation as a
sequence of homomorphic matrix multiplications, while the
procedure of [15] computes only the inner product part as a
sequence. Intuitively, our optimization use the matrix GSW-
FHE scheme to sequentialize the bootstrapping procedure of
[15]. The asymmetric noise growth property is more effec-
tive in estimating how much noise the procedure yields.

The inner product can be computed by compositions of
cyclic permutations. The bootstrapping procedure of [15]
represents elements in Zq as cyclic permutations, and eval-
uates their compositions by the naive matrix multiplication
algorithm on the ciphertexts that encrypt every elements in
the permutation matrices. Instead of that, our bootstrapping
procedure uses homomorphic matrix multiplication to di-
rectly evaluate the compositions. The rounding part tests
for every value close to q/4 whether the output of the inner
product part encrypts the permutation corresponding to the
value, and sums their results (that are 0 or 1). Our procedure
also use homomorphic matrix multiplication to realize the
equality test. The result of the inner product is represented
as an indicator vector, and encrypted component-wise in a
SIMD encryption. The inner product equals to x if and only
if its indicator vector has 1 in the x-th position. The ho-
momorphic equality test between the inner product and x is
computed by homomorphically permuting x-th slot to the
first slot in the SIMD ciphertext. The result of the test is en-
crypted in the first slot. From the above, the bootstrapping
procedure except for the summation can be represented as a
sequence of Õ(λ) homomorphic multiplications for a secu-
rity parameter λ.

2. Preliminaries

We denote the set of natural numbers by N, the set of inte-
gers by Z, the set of rational numbers by Q, and the set of
real numbers by R. Let G be some group and P be some
probability distribution, then we use a

U←−G to denote that a
is chosen from G uniformly at random, and use b

R←−P to de-
note that b is chosen along P. We take all logarithms to base
2, unless otherwise noted.

Vectors are in column form and are written by using
bold lower-case letters, e.g., x, and the i-th element of a
vector is denoted by xi. We denote the �∞ norm (the max-
imum norm) of the vector x by ‖x‖∞, and the �2 norm (the

Euclidean norm) of x by ‖x‖2. The inner product between
two vectors is denoted by 〈x, y〉. Matrices are written by us-
ing bold capital letters, e.g., X, and the i-th column vector
of a matrix is denoted by xi. For a matrix X ∈ Rm×n, we
define the �∞ and �2 norms of X as ‖X‖∞ := maxi∈[n]{‖xi‖∞}
and ‖X‖2 := maxi∈[n]{‖xi‖2}, respectively. For a matrix X ∈
Rm×n, the notation XT ∈ Rn×m denotes the transpose of X.
For matrices A ∈ Rm×n1 and B ∈ Rm×n2 , [A ‖ B] ∈ Rm×(n1+n2)

denotes the concatenation of A with B. When we refer to the
n × n identity matrix, we denote it by In.

2.1 Learning with Errors

The learning with errors (LWE) assumption was first intro-
duced by Regev [13].

Definition 1 (DLWE). For a security parameter λ, let n :=
n(λ) be an integer dimension, let q := q(λ) ≥ 2 be an inte-
ger modulus, and let χ := χ(λ) be an error distribution over
Z. DLWEn,q,χ is the problem to distinguish the following
two distributions: In the first distribution, a tuple (ai, bi) is
sampled from uniform over Zn

q × Zq; In the second distribu-

tion, s
U←−Zn

q and then a tuple (ai, bi) is sampled by sampling

ai
U←−Zn

q, ei
R←−χ, and setting bi := 〈ai, s〉 + ei mod q. The

DLWEn,q,χ assumption is that DLWEn,q,χ is infeasible.

Recall that GapSVPγ is the promise problem to dis-
tinguish between the case in which the lattice has a vector
shorter than r ∈ Q, and the case in which all the lattice vec-
tors are greater than γ ·r. SIVPγ is the problem to find the set
of short linearly independent vectors in a lattice. DLWEn,q,χ

has reductions to the standard lattice assumptions as follows.
These reductions take χ to be a discrete Gaussian distribu-
tion DZ,αq (that is centered around 0 and has parameter αq
for some α < 1).

Corollary 1 ([13], [19]–[21]). Let q := q(n) ∈ N be a power
of primes q := pr or a product of distinct prime numbers
q :=

∏
i qi (qi := poly(n) for all i), and let α ≥ √n/q. If

there exists an efficient algorithm that solves (average-case)
DLWEn,q,DZ,αq ,

• there exists an efficient quantum algorithm that can
solve GapSVPÕ(n/α) and SIVPÕ(n/α) in the worst-case
for any n-dimensional lattices.

• if in addition we have q ≥ Õ(2n/2), there exists an effi-
cient classical algorithm that can solve GapSVPÕ(n/α)
in the worst-case for any n-dimensional lattices.

2.2 Subgaussian

A real random variable X is subgaussian with parameter s if
for all t ∈ R, its (scaled) moment generating function holds
E[exp(2πtX)] ≤ exp(πs2t2). Subgaussian random variables
have the following two properties that can be easily obtained
from the definition of subgaussian random variables:

• Homogeneity: If the subgaussian random variable X

76
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.1 JANUARY 2016

has parameter s, then cX is subgaussian with parameter
cs.

• Pythagorean additivity: For two subgaussian random
variables X1 and X2 (that is independent from X1) with
parameter s1 and s2, respectively, X1 + X2 is subgaus-

sian with parameter
√

s2
1 + s2

2.

The above can be extended to vectors. A real random
vector x is subgaussian with parameter s if for all real unit
vectors u, their marginal 〈u, x〉 is subgaussian with parame-
ter s. It is clear from the definition that the concatenation of
subgaussian variables or vectors, each of which has a param-
eter s and is independent of the prior one, is also subgaus-
sian with parameter s. The homogeneity and Pythagorean
additivity also hold from linearity of vectors. It is known
that the euclidean norm of the subgaussian random vector
has the following upper bound.

Lemma 1 ([22]). Let x ∈ Rn be a random vector that
has independent subgaussian coordinates with parameter s.
Then there exists a universal constant C such that Pr[‖x‖2 >
C · s√n] ≤ 2−Ω(n).

To suppress the growth in noise, Gentry et al. [9]
made use of a procedure that decomposes a vector in bi-
nary representation. Alperin-Sheriff and Peikert [15] ob-
served that instead of the decomposition procedure, using
the following algorithm G−1 that samples a subgaussian
random vector allows us to re-randomize errors in cipher-
texts and tightly analyze the noise growth in [9]. Lemma
2 can be extended to matrices in the obvious way. Let
gT := (1, 2, 22, . . . , 2�log q�−1) and G := gT ⊗ In.

Lemma 2 ([15], which is adapted from [21]). There is a
randomized, efficiently computable function G−1 : Zn

q →
Zn·�log q� such that for any a ∈ Zn

q, x
R←−G−1(a) is subgaussian

with parameter O(1) and a = [Gx]q

2.3 Homomorphic Encryption, Circular Security, and
Bootstrapping

Here we describe the syntax of homomorphic encryp-
tion scheme to introduce a definition of circular secu-
rity and the Gentry’s bootstrapping theorem. Let M
and C be the message and ciphertext space. A homo-
morphic encryption scheme consists of four algorithms,
{KeyGen,Enc,Dec,Eval}.
• KeyGen(1λ): output a public encryption key pk, a se-

cret decryption key sk, and a public evaluation key evk.
• Encpk(m): using a public key pk, encrypt a plaintext

m ∈ M into a ciphertext c ∈ C.
• Decsk(c): using a secret key sk, recover the message

encrypted in the ciphertext c.
• Evalevk(f , c1, . . . , c�): using the evaluation key evk,

output a ciphertext c f ∈ C that is obtained by apply-
ing the function f :M� →M to c1, . . . , c�.

To prove the security of our construction, we introduce
a special kind of circular security for a homomorphic en-
cryption scheme.

Definition 2 (Circular security). Let K be the key space
defined by a security parameter λ. Let f be a function
from K to C. A homomorphic encryption scheme HE =
{KeyGen,Enc,Dec,Eval} is circular secure with respect to
f if for all probabilistic polynomial-time adversary A, the
advantage ofA in the following game is negligible in λ:

1. A challenger computes (pk, sk, evk)
R←−KeyGen(1λ),

and chooses a bit b
U←−{0, 1}.

2. Let f+ : M × M → M be a function that computes
f+(x, y) := x + y ∈ M. The challenger computes a
challenge ciphertext c∗ as follows and sends it toA.

c∗ :=

{
Evalevk(f+,Encpk(0), f (sk)) if b = 0,
Encpk(0) ∈ C otherwise.

3. A outputs a guess b′ ∈ {0, 1}.
The advantage ofA is Pr[b = b′] − 1/2.

In LWE-based FHE schemes, Evalevk(f+,Encpk(0),
f (sk)) can be seen as a kind of ciphertexts that encrypt
f (sk). This is why we call the above security notion circular
security.

3. Matrix GSW-FHE

We translate [9] to be able to encrypt a matrix and homomor-
phically compute matrix addition and multiplication. This is
a natural extension of packed FHE schemes. In Sect. 3.1, we
present our matrix FHE scheme. In Sect. 3.2, we discuss the
relationship between our scheme and packed FHE schemes.

3.1 Construction

Let λ be the security parameter. Our scheme is parameter-
ized by an integer lattice dimension n, an integer modulus
q, and a distribution χ over Z that is assumed to be sub-
gaussian , all of which depends on λ. We let � := �log q�,
m := O((n + r) log q) , and N := (n + r) · �. Let r be the
number of bits to be encrypted, which defines the message
space {0, 1}r×r. The ciphertext space is Z(n+r)×N

q . Our scheme
uses the rounding function �·�2 that for any x ∈ Zq, �x�2
outputs 1 if x is close to q/4, and 0 otherwise. Recall that
gT = (1, 2, . . . , 2�−1) and G = gT ⊗ In+r.

• KeyGen(1λ, r): Set the parameters n, q, m, �, N, and χ
as described above. Sample a uniformly random matrix
A

U←−Zn×m
q , secret key matrix S′ R←−χr×n, and noise matrix

E
R←−χr×m. Let S := [Ir ‖ −S′] ∈ Zr×(n+r)

q . We denote by
sT

i the i-th row of S. Set

B :=

(
S′A + E

A

)
∈ Z(n+r)×m

q .

Let M(i, j) ∈ {0, 1}r×r (i, j = 1, . . . , r) be the matrix with

HIROMASA et al.: PACKING MESSAGES AND OPTIMIZING BOOTSTRAPPING IN GSW-FHE
77

1 in the (i, j)-th position and 0 in the others. For all
i, j = 1, . . . , r, first sample R(i, j)

U←−{0, 1}m×N , and set

P(i, j) := BR(i, j) +

(
M(i, j)S

0

)
G ∈ Z(n+r)×N

q .

Output pk := ({P(i, j)}i, j∈[r], B) and sk := S.
• SecEncsk(M ∈ {0, 1}r×r): Sample a random matrices

A′ U←−Zn×N
q and E

R←−χr×N , parse S = [Ir ‖ −S′], and
output the ciphertext

C :=

[(
S′A′ + E

A′

)
+

(
MS
0

)
G
]

q

∈ Z(n+r)×N
q .

• PubEncpk(M ∈ {0, 1}r×r): Sample a random matrix

R
U←−{0, 1}m×N , and output the ciphertext

C := BR +
∑

i, j∈[r]:M[i, j]=1

P(i, j) ∈ Z(n+r)×N
q ,

where M[i, j] is the (i, j)-th element of M.
• Decsk(C): Output the matrix M = (�〈si, c j�−1〉�2)i, j∈[r] ∈
{0, 1}r×r.

• C1 ⊕ C2: Output Cadd := C1 + C2 ∈ Z(n+r)×N
q as the

result of homomorphic addition between the input ci-
phertexts.

• C1 � C2: Output Cmult := C1G−1(C2) ∈ Z(n+r)×N
q as

the result of homomorphic multiplication between the
input ciphertexts.

Definition 3. We say that a ciphertext C encrypts a plaintext
matrix M with noise matrix E if C is an encryption of M and
E = SC − MSG (mod q).

The following lemma states the correctness of our
asymmetric encryption. Similar to this, the correctness of
our symmetric encryption can be proven immediately.

Lemma 3. If a ciphertext C encrypts a plaintext matrix M ∈
{0, 1}r×r with noise matrix E′ such that ‖E′‖∞ < q/8, then
Decsk(C) = M.

Proof. We have

SC = S
(
BR +

∑
i, j∈[r]:M[i, j]=1 BR(i, j) +

(
MS
0

)
G
)

= ER +
∑

i, j∈[r]:M[i, j]=1 ER(i, j) + MSG
= ER +

∑
i, j∈[r]:M[i, j]=1 ER(i, j)

+ [M(gT ⊗ Ir) ‖ −MS′(gT ⊗ In)]

Let E′ := E(R +
∑

i, j∈[r]:M[i, j]=1 R(i, j)), then ‖E′‖∞ < q/8.
Because of 2�−2 ∈ [q/4, q/2), for all i, j = 1, . . . , r, it holds
that 〈si, c j�−1〉 ≈ q/4 if mi, j = 1, and 〈si, c j�−1〉 ≈ 0 other-
wise. �

Security of SecEnc directly holds fromDLWEn,q,χ. For
a matrix M ∈ {0, 1}r×r, let fM be a function from Zr×(n+r)

q to
Z

(n+r)×N
q such that for a matrix S ∈ Zr×(n+r)

q ,

fM(S) =

(
MS
0

)
G ∈ Z(n+r)×N

q .

The security of PubEnc directly holds by DLWEn,q,χ and
assuming our scheme circular secure with respect to fM(i, j)

.

Lemma 4. Let B,M(i, j), R(i, j), P(i, j) (i, j = 1, . . . , r) be the
matrices generated in KeyGen, and R be the matrix gener-
ated in PubEnc. For every i, j = 1, . . . , r, if our scheme is
circular secure with respect to fM(i, j)

and DLWEn,q,χ holds,
then the joint distribution (B, BR(i, j), P(i, j), BR) is compu-
tationally indistinguishable from uniform over Z(n+r)×m

q ×
Z

(n+r)×N
q × Z(n+r)×N

q × Z(n+r)×N
q .

We need to estimate the noise growth by the evaluation
of homomorphic matrix addition and multiplication. Similar
to [15], we employ the properties of subgaussian random
variables for tight analysis. We collect the results of the
estimation in the following lemma.

Lemma 5. Let S ∈ Zr×(n+r) be a secret key matrix. Let
C1 ∈ Z(n+r)×N

q and C2 ∈ Z(n+r)×N
q be ciphertexts that en-

crypt M1 ∈ {0, 1}r×r and M2 ∈ {0, 1}r×r with noise matrices
E1 ∈ Zr×N and E2 ∈ Zr×N, respectively. Let eT

1,i ∈ Z1×N (i =
1, . . . , r) be the i-th row vector of E1. Let Cadd := C1 ⊕ C2

and Cmult
R←−C1 � C2. Then, we have

SCadd = Eadd + (M1 + M2)SG ∈ Zr×N
q ,

SCmult = Emult + (M1 M2)SG ∈ Zr×N
q ,

where Eadd := E1+E2 and Emult := E+M1E2. In particular,
E has in the i-th row the independent subgaussian entries
with parameter O(‖e1,i‖2).

Proof. We can immediately prove the statements for Cadd.
For Cmult, we have

SCmult = SC1G−1(C2)

= (E1 + M1SG)G−1(C2)

= E1G−1(C2) + M1E2 + M1 M2SG.

From the subgaussian properties and Lemma 2, we can see
that the i-th row entries of E := E1G−1(C2) are independent
subgaussian with parameter O(‖e1,i‖2). �

Similar to the original GSW scheme, our scheme also
has the asymmetric noise growth property, and thereby com-
puting a polynomial length chain of homomorphic multipli-
cations incurs the noise growth by a multiplicative polyno-
mial factor. For ease of analyzing our optimized bootstrap-
ping procedure described in the next section, we set the fol-
lowing corollary immediately proven from Lemma 5 and the
properties of subgaussian random variables. This corollary
includes the fixed ciphertext G ∈ Z(n+r)×N of the message
Ir with noise 0. This makes the noise in the output cipher-
text subgaussian and independent from the noise in the input
ciphertexts.

78
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.1 JANUARY 2016

Corollary 2. For i = 1, . . . , k, let Ci ∈ Z(n+r)×N be a ci-
phertext that encrypts a message matrix Mi ∈ {0, 1}r×r such
that for a matrix E ∈ Zr×N, ‖(MiE)T ‖2 ≤ ‖ET ‖2 with noise
matrix Ei ∈ Zr×N. Let

C
R←−

k⊙
i=1

Ci�G = C1�(C2�(· · · (Ck−1�(Ck�G))) · · ·).

For i = 1, . . . , k, let eT
i be a row vector of Ei whose norm

is equal to ‖ET
i ‖2, and eT := [eT

1 ‖ eT
2 ‖ · · · ‖ eT

k] ∈ Z1×kN.
Then the noise matrix of C has in every row the independent
subgaussian entries with parameter O(‖e‖2).

Proof. The ciphertext C encrypts the message
∏k

i=1 Mi with
noise E1X1 +

∑k
i=2(

∏i−1
j=1 M j)EiXi, where Xi is the matrix

used in the evaluation of each �. By Lemma 5, the ele-
ments of E1X1 in every row are independent and subgaus-
sian with parameter O(‖e1‖2). Since we have ‖(MiE)T ‖2 ≤
‖ET ‖2, (

∏i−1
j=1 M j)EiXi has in its every row the indepen-

dent subgaussian entries with parameter O(‖ei‖2). By the
Pythagorean additivity of subgaussian random variables,
E1X1 +

∑k
i=2(

∏i−1
j=1 M j)EiXi has in every row the indepen-

dent subgaussian entries with parameter O(‖e‖2). �

3.2 Relation to Packed FHE

The matrix GSW-FHE above is a natural extension of
packed FHE. Plaintext slots in packed FHE correspond to
diagonal entries of plaintext matrices in the matrix GSW-
FHE scheme. It is easy to see that we can correctly compute
homomorphic slot-wise addition and multiplication. In ap-
plications of packed FHE such as in [23], we may want to
permute plaintext slots. This can be achieved by multiplying
the encryptions of a permutation and its inverse from left and
right. Security and correctness of the following algorithms
clearly holds from Lemmas 4 and 5.

Let r > 0 be an integer. For any permutation σ :
{1, . . . , r} → {1, . . . , r}, its permutation matrix Σ is given
as: Σ := [eσ(1) ‖ · · · ‖ eσ(r)] ∈ {0, 1}r×r, where ei ∈ {0, 1}r
(i ∈ [r]) is the standard basis vector with 1 in the i-th posi-
tion and 0 in the others.

• SwitchKeyGen(S, σ): Given a secret key matrix S ∈
Z

r×(n+r)
q and a permutation σ, let Σ ∈ {0, 1}r×r be the

permutation matrix of σ, and generate

Wσ
R←−SecEncS(Σ),

Wσ−1
R←−SecEncS(ΣT).

Output the switch key sskσ := (Wσ,Wσ−1).
• SlotSwitchsskσ (C): Take as input a switch key sskσ and

a ciphertext C, output

Cσ
R←−Wσ � (C � (Wσ−1 � G)),

where G ∈ Z(n+r)×N is the fixed encryption of Ir with
noise zero.

One nice feature of our plaintext-slot switching is not to
suffer from the inconvenience of the security as in [11]: we
do not have to use a larger modulus than the matrix GSW-
FHE scheme. Brakerski et al. [11] made use of a larger mod-
ulus Q = 2�q to suppress noise growth when switching de-
cryption keys, so the security of the plaintext-slot switching
in [11] must have related to Q. The larger modulus leads
the larger modulus-to-noise ratio. To obtain the same se-
curity level as the underlying SIMD scheme of [11], it was
required to select a larger dimension. As opposed to this,
our plaintext-slot switching can use the same modulus as
the matrix GSW-FHE scheme.

3.3 Discussion

The underlying GSW-FHE has a variant from Ring Learning
With Errors (RLWE) problem and ID/attribute-based con-
structions. According to this, we discuss such variants of
our scheme.

A RLWE-based Variant. The RLWE problem was first in-
troduced by Lyubashevsky, Peikert, and Regev [24]. The
paper [24] showed that the problem can be reduced to the
well-established shortest vector problem (SVP) on ideal lat-
tices.

Definition 4. For a security parameter λ, let f (x) := xd + 1
where d := d(λ) is a power of 2. Let q := q(λ) ≥ 2 be an in-
teger. Let R := Z[X]/(f (x)) and Rq := R/qR. Let χ := χ(λ)
be a distribution over R. The RLWEn,q,χ problem is to dis-
tinguish the following two distributions: In the first distribu-
tion, (ai, bi) is sampled from R2

q uniformly. In the second dis-
tribution, one first samples s from Rq uniformly, and samples

(ai, bi) by sampling ai
U←−Rq, ei

R←−χ and setting bi := ais + ei.
The RLWEn,q,χ assumption is that the RLWEn,q,χ problem is
infeasible.

The RLWE variant of our scheme starts with the LPR
encryption [24], specifically with a multibit variant of the
LPR encryption. A public key of the encryption is a tuple of
RLWE instances for a common ring element a

U←−Rq:

a :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a · s1 + e1

a · s2 + e2
...

a · sr + er

a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R(r+1)

q ,

where for all i ∈ [r] si
R←−χ and ei

R←−χ. As shown in [24], one
can sample si from the noise distribution χ. The correspond-
ing secret key is a r × (r + 1) matrix S over Rq:

S :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣Ir

−s1
...
−sr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ Rr×(r+1)
q ,

where Sa = e is a small vector in Rr
q. To encrypt (0, . . . , 0) ∈

HIROMASA et al.: PACKING MESSAGES AND OPTIMIZING BOOTSTRAPPING IN GSW-FHE
79

{0, 1}r, one first samples a random short element r
R←−χ and a

short vector e′ R←−χ(r+1), and outputs c := a ·r+e′ ∈ R(r+1)
q . To

encrypt (m1, . . . ,mr) ∈ {0, 1}r, one adds m1 · �q/2�, . . . ,mr ·
�q/2� ∈ Rq to the first r elements of c. The decryption com-
putes

Sc = e · r + Se′ +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
m1 · �q/2�
...

mr · �q/2�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ Rr
q,

and for each i ∈ [r] outputs mi = 0 or mi = 1 depending on
whether or not the i-th element of Sc is small.

For an integer r > 0, the message space of our RLWE
variant is {0, 1}r×r. Let � := �log q� and N := (r + 1) · �. Let
gT := (1, 2, . . . , 2�−1) ∈ R1×�

q and G := gT ⊗ I(r+1) ∈ R(r+1)×N
q .

We can define the G−1(·) function for polynomial-ring el-
ements as well as for integer matrices: There exists a de-
terministic polynomial-time algorithm G−1(·) such that for
any integer k > 0 and for any C ∈ R(r+1)×k

q , we have
C = GG−1(C) ∈ R(r+1)×k

q . Similar to our LWE-based con-
struction, we publish as a part of the public key the secret
key encryptions of partial plaintext matrices. The partial
plaintext matrices are masked by the LPR encryptions. Let
C′ ∈ R(r+1)×N

q be N LPR encryptions. For all i, j ∈ [r], the
public key P(i, j) is

P(i, j) := C′ +
[

M(i, j)S
0

]
G ∈ R(r+1)×N

q .

To encrypt a plaintext matrix publicly, we randomize the
corresponding public keys by other N LPR encryptions.
That is, an encryption of a message M ∈ {0, 1}r×r is

C := C′′ +
∑

i, j∈[r]:M[i, j]=1

P(i, j) ∈ R(r+1)×N
q .

The decryption, homomorphic addition, and homomorphic
multiplication are the same as them of the LWE based
scheme. Since multiplying the secret key matrix to the LPR
encryptions leads a small error matrix in Rr×N

q , correctness
of the decryption holds as in the LWE case. Since the ma-
trix C′′ masking the sum of P(i, j) is indistinguishable from
a (r + 1) × N random matrix over Rq by the security of the
LPR encryption scheme, the ciphertext C is also indistin-
guishable from a random in R(r+1)×N

q .
Our RLWE variant is more efficient than the LWE-

based one, but is not as efficient as the previous RLWE-
based SIMD FHE schemes. This is because the previ-
ous schemes use the dimension-reduction algorithm [5],
[14], which is much more efficient for RLWE-based FHE
schemes than LWE-based ones.

ID/Attribute-based Constructions. For simplicity, we fo-
cus only on the ID-based variant. The same argument de-
scribed here can easily adopted to the attribute-based case.

As the same reason that FHE schemes before GSW-
FHE can not be transformed into the ID-based ones, our

scheme can not be ID-based. Recall that our scheme pub-
lishes as the public key secret key encryptions of partial
plaintexts. Since they need to be encryptions under the se-
cret key based on an ID, the public key needs to be user-
specific, and so is not ID-based.

4. Optimizing Bootstrapping

We describe how to optimize the bootstrapping procedure of
[15] by using our scheme. In Sect. 4.1, we present the opti-
mized bootstrapping procedure outlined in Sect. 1.2, whose
correctness and security are discussed in Sect. 4.2.

4.1 Optimized Procedure

Let Q be the modulus of the ciphertext to be refreshed. Us-
ing the dimension-modulus reduction technique [5], [14],
we can publicly switch the modulus and the dimension to
the arbitrary and possibly smaller ones q, d = Õ(λ). Here,
q has the form q :=

∏t
i=1 ri, where ri are small and pow-

ers of distinct primes (and hence pairwise coprime). The
following lemma allows us to choose a sufficiently large
q so that the correctness of the dimension-modulus reduc-
tion holds by letting it be the product of all maximal prime
powers ri bounded by O(log λ), and then there exists t =
O(log λ/ log log λ).

Lemma 6 ([15]). For all x ≥ 7, the product of all maximal
prime powers ri ≤ x is at least exp(3x/4).

By CRT, the additive group Z+q is isomorphic to the di-
rect product Z+r1

×· · ·×Z+rt
. For all i ∈ [t], x ∈ Z+ri

corresponds
to a cyclic permutation that can be represented by an indica-
tor vector with 1 in the x-th position and 0 in the others. The
reason is that we can compute permutation matrices (whose
concrete definition is described in Sect. 3.2) for elements in
Zri from their indicator vectors as described in Sect. 1.2. We
write φi : Zq → {0, 1}r, where r := maxi{ri}, for an em-
bedding from Zq to a group of cyclic permutations for the
elements in Zri .

Our optimized bootstrapping procedure consists of two
algorithms, BootKeyGen and Bootstrap. The procedure can
be used to refresh ciphertexts of all known standard LWE-
based FHE. We achieve the input ciphertext c ∈ {0, 1}d for
Bootstrap from the dimension-modulus reduction and bit-
decomposition of the ciphertext to be refreshed, and let s ∈
Zd

q be a secret key that corresponds to c. This pre-processing
is the same as that in [15], so see for further details.

• BootKeyGen(sk, s): Given a secret key sk for our ma-
trix GSW-FHE and a secret key s ∈ Zd

q for a ciphertext
to be refreshed, output a bootstrapping key. For every
i ∈ [t] and j ∈ [d], let πφi(s j) be the permutation corre-
sponding to φi(s j), and compute

τi, j
R←−SecEncsk(diag(φi(s j))),

sski, j
R←−SwitchKeyGen(sk, πφi(s j)),

80
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.1 JANUARY 2016

where for a vector x ∈ Zr, diag(x) ∈ Zr×r is the square
integer matrix that has x in its diagonal entries and 0
in the others. In addition, we generate hints to check
equality on packed indicator vectors. For every i ∈ [t]
and x ∈ Zq such that �x�2 = 1 †, generate

sskφi(x)
R←−SwitchKeyGen(sk, πφi(x)),

where πφi(x) is the cyclic permutation that maps the
(x mod ri)-th row to the first row in the matrix. To
mask the first plaintext slot, generate an encryption of
(1, 0, . . . , 0):

P
R←−SecEncsk(diag((1, 0, . . . , 0))).

Output the bootstrapping key

bk := {(τi, j, sski, j, P, sskφi(x))}i∈[t], j∈[d],x∈Zq:�x�2=1.

• Bootstrapbk(c): Given a bootstrapping key bk and a
ciphertext c ∈ Zd

q, output the refreshed ciphertext C∗.
The decryption of all FHE based on the standard LWE
computes �〈c, s〉�2. The algorithm Bootstrap consists
of two phases that homomorphically evaluate the inner
product and rounding.

Inner Product: For every i ∈ [t], homomorphi-
cally compute an encryption of φi(〈c, s〉). Let
h := min{ j ∈ [d] : c j = 1}. For i = 1, . . . , t,
set C∗i := τi,h, and iteratively compute

C∗i
R←−SlotSwitchsski, j (C

∗
i)

for j = h + 1, . . . , d such that c j = 1.
Rounding: For each x ∈ Zq such that �x�2 = 1,
homomorphically check equality between x and
〈c, s〉, and sum their results. The refreshed cipher-
text is computed as:

C∗ R←−
⊕

x∈Zq:�x�2=1

⎛⎜⎜⎜⎜⎜⎜⎝
⊙
i∈[t]

(
SlotSwitchsskφi (x)(C

∗
i)
)
�P

⎞⎟⎟⎟⎟⎟⎟⎠. (1)

The post-processing is almost the same as that in [15]
except for the way to extract a matrix ciphertext. When fin-
ishing the bootstrapping procedure, we have a ciphertext C∗

that encrypts in the first slot the same plaintext as the ci-
phertext c. A vector ciphertext like [5]–[7] can be obtained
to just take the � − 1-th column vector of C∗, and a matrix
ciphertext like [9] can be obtained by removing from the
second row to the r-th row and from the l + 1-th column to
rl-th column, and aggregating the remainders. We can uti-
lize the key-switching procedure [5], [6] for switching from
s1 back to the original secret key s. This requires us to as-
sume circular security.

Our bootstrapping procedure is more time- and space-
efficient than that of [15]. The procedure [15] encrypts
every elements of the permutation matrices corresponding

†Obviously, our procedure can work on not only the rounding
function �·�2 but also some arbitrary functions f : Zq → {0, 1}.

to the secret key elements, and homomorphically evaluates
naive matrix multiplications to obtain encryptions of com-
positions of permutations. In our procedure, a permutation
is encrypted in one ciphertext, and a composition is com-
puted by two homomorphic multiplications. This makes our
procedure time-efficient by roughly a O(log2 λ) factor, and
space-efficient by a O(log λ) factor.

4.2 Correctness and Security

From the security of our scheme, it is easy to see that our
bootstrapping procedure can be secure by assuming the cir-
cular security and DLWE. Correctness holds as the follow-
ing lemma.

Lemma 7. Let sk be the secret key for our scheme. Let c
and s be a ciphertext and secret key described in our boot-
strapping procedure. Then, for bk

R←−BootKeyGen(sk, s), the
refreshed ciphertext C∗ R←−Bootstrapbk(c) encrypts �〈s, c〉�2 ∈
{0, 1} in the first slot.

Proof. From Lemma 5 and group homomorphism of φi, C∗i
encrypts φi([〈s, c〉]q). Since Zq is isomorphic to Zr1×· · ·×Zrt

by CRT,
⊙

i∈[t](SlotSwitchsskφi (x) (C
∗
i)) � P encrypts 1 in the

first slot if and only if x = 〈s, c〉 mod q. Finally, C∗ encrypts
1 if and only if �〈s, c〉�2 = 1. �

Here, we let s be the Gaussian parameter. Recall that
n is the LWE dimension, r is the number of encrypted bits,
� = �log Q�, N = (n + r) · �, t = O(log λ/ log log λ), d =
Õ(λ) and q = Õ(λ). We estimate the noise growth by our
optimized bootstrapping procedure.

Lemma 8. For any ciphertext c ∈ {0, 1}d described in our
bootstrapping procedure, the noise in the refreshed cipher-
text C∗ R←−Bootstrapbk(c) has independent subgaussian en-
tries with parameter O(s

√
n�dtq), except with probability

2−Ω((n+r)ldt) over the random choice of bk and Bootstrap.

Proof. Since the parenthesized part before the additions
in Eq. (1) can be broken down into a sequence of O(dt)
homomorphic multiplications, Corollary 2 and Lemma 1
tell us that the term has subgaussian noise with parame-
ter O(s

√
Ndt), except with probability 2−Ω(Ndt). From the

Pythagorean additivity of subgaussian random variables and
N = (n+r)·�, the noise in C∗ are subgaussian with parameter
O(s

√
(n + r)�dtq), and so O(s

√
n�dtq) by the fact n > r. �

From the above lemma, we can see that our procedure
refreshes ciphertexts with error growth by the O(

√
nldtq)

factor. Our scheme can evaluate its augmented decryption
circuit by choosing a larger modulus than the final noise, and
thus be pure FHE by the Gentry’s bootstrapping theorem
and the circular security assumption.

Theorem 2. Our optimized bootstrapping scheme can be
correct and secure assuming

• the quantum worst-case hardness of approximating

HIROMASA et al.: PACKING MESSAGES AND OPTIMIZING BOOTSTRAPPING IN GSW-FHE
81

GapSVPÕ(n1.5λ) and SIVPÕ(n1.5λ),
• or the classical worst-case hardness of approximating
GapSVPÕ(n2λ)

on any n dimensional lattice.

Proof. By Lemma 1, to rely on the quantum worst-case
hardness, we choose s = Θ(

√
n). From Lemma 8, for cor-

rectness we only have to select Q = Ω̃(nλ log Q), which
satisfies Q = Õ(nλ). Since the LWE inverse error rate is
1/α = Q/s = Õ(

√
nλ), the security of our bootstrapping

scheme is reduced to GapSVPÕ(n1.5λ) and SIVPÕ(n1.5λ).
In the case of reducing to the classical hardness of

the lattice problem, since 1/α = Ω̃(λ
√

n log Q) and we
must take Q ≈ 2n/2, the LWE inverse error rate satisfies
1/α = Ω̃(λ · n). Therefore, the security of our optimized
bootstrapping scheme is reduced to the classical hardness of
GapSVPÕ(n2λ). �

Since all known algorithms that approximate GapSVP
and SIVP on any n dimensional lattices to within a poly(n)-
factor run in time 2Ω(n), the 2λ hardness requires us to choose
n = Θ(λ). This makes the problems to which the security is
reduced in the quantum case have the approximation factor
Õ(n2.5), which is smaller than Õ(n3), the one of [15]’s boot-
strapping scheme. In the classical case, the LWE inverse
error rate is 1/α = Ω̃(n2) and hence our approximation fac-
tor is Õ(n3). Furthermore, by selecting a larger dimension
n = λ1/ε for ε > 0 (so at the cost of efficiency), the ap-
proximation factor can be Õ(n1.5+ε), which is comparable
to the one of [14] and so the best known factor of standard
lattice-based PKE. Consequently, our optimized bootstrap-
ping scheme can be as secure as any other standard lattice-
based PKE without successive dimension-modulus reduc-
tion, which is essential in all the known bootstrapping pro-
cedures [14], [15] provided recently.

References

[1] C. Gentry, A FULLY HOMOMORPHIC ENCRYPTION SCHEME,
Ph.D. thesis, Stanford University, Available at http://crypto.stanford.
edu/craig, 2009.

[2] C. Gentry, “Fully homomorphic encryption using ideal lattices,”
Proc. 41st Annual ACM Symposium on Theory of Computing,
STOC’09, pp.169–178, 2009.

[3] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
homomorphic encryption over the integers,” Advances in Cryptol-
ogy — EUROCRYPT 2010, Lecture Notes in Computer Science,
vol.6110, pp.24–43, Springer, 2010.

[4] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryp-
tion from ring-LWE and security for key dependent messages,” Ad-
vances in Cryptology — CRYPTO 2011, Lecture Notes in Computer
Science, vol.6841, pp.505–524, Springer, 2011.

[5] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) LWE,” 2011 IEEE 52nd Annual Sympo-
sium on Foundations of Computer Science, pp.97–106, 2011.

[6] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully
homomorphic encryption without bootstrapping,” Proc. 3rd Inno-
vations in Theoretical Computer Science Conference on ITCS’12,
pp.309–325, 2012.

[7] Z. Brakerski, “Fully homomorphic encryption without modu-
lus switching from classical GapSVP,” Advances in Cryptol-

ogy — CRYPTO 2012, Lecture Notes in Computer Science,
vol.7417, pp.868–886, Springer, 2012.

[8] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly mul-
tiparty computation on the cloud via multikey fully homomor-
phic encryption,” Proc. 44th symposium on Theory of Computing,
STOC’12, pp.1219–1234, 2012.

[9] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically–
faster, attribute-based,” Advances in Cryptology — CRYPTO 2013,
Lecture Notes in Computer Science, vol.8042, pp.75–92, Springer,
2013.

[10] N.P. Smart and F. Vercauteren, “Fully homomorphic encryption with
relatively small key and ciphertext sizes,” Public Key Cryptogra-
phy — PKC 2010, Lecture Notes in Computer Science, vol.6056,
pp.420–443, Springer, 2010.

[11] Z. Brakerski, C. Gentry, and S. Halevi, “Packed ciphertexts
in LWE-based homomorphic encryption,” Public-Key Cryptogra-
phy — PKC 2013, Lecture Notes in Computer Science, vol.7778,
pp.1–13, Springer, 2013.

[12] C. Peikert, V. Vaikuntanathan, and B. Waters, “A framework for
efficient and composable oblivious transfer,” Advances in Cryp-
tology — CRYPTO 2008, Lecture Notes in Computer Science,
vol.5157, pp.554–571, Springer, 2008.

[13] O. Regev, “On lattices, learning with errors, random linear codes,
and cryptography,” Proc. Thirty-Seventh Annual ACM Symposium
on Theory of Computing, STOC’05, pp.84–93, 2005.

[14] Z. Brakerski and V. Vaikuntanathan, “Lattice-based FHE as secure
as PKE,” Proc. 5th Conference on Innovations in Theoretical Com-
puter Science, ITCS’14, pp.1–12, 2014.

[15] J. Alperin-Sheriff and C. Peikert, “Faster bootstrapping with poly-
nomial error,” Advances in Cryptology — CRYPTO 2014, Lecture
Notes in Computer Science, vol.8616, pp.297–314, Springer, 2014.

[16] D.A. Barrington, “Bounded-width polynomial-size branching pro-
grams recognize exactly those languages in NC1,” Proc. Eighteenth
Annual ACM Symposium on Theory of computing, STOC’86,
pp.1–5, 1986.

[17] B. Barak, “Cryptography course — Lecture notes, COS 433,”
Princeton University, Computer Science Department, 2010. Avail-
able at http://www.cs.princeton.edu/courses/archive/spring10/cos433

[18] R. Rothblum, “Homomorphic encryption: From private-key to pub-
lic-key,” Theory of Cryptography, Lecture Notes in Computer Sci-
ence, vol.6597, pp.219–234, Springer, 2011.

[19] C. Peikert, “Public-key cryptosystems from the worst-case shortest
vector problem,” Proc. 41st Annual ACM Symposium on Sympo-
sium on Theory of Computing, STOC’09, pp.333–342, 2009.

[20] D. Micciancio and P. Mol, “Pseudorandom knapsacks and the sam-
ple complexity of LWE search-to-decision reductions,” Advances in
Cryptology — CRYPTO 2011, Lecture Notes in Computer Science,
vol.6841, pp.465–484, Springe, 2011.

[21] D. Micciancio and C. Peikert, “Trapdoors for lattices: Simpler,
Tighter, faster, smaller,” Advances in Cryptology — EUROCRYPT
2012, Lecture Notes in Computer Science, vol.7237, pp.700–718,
Springer, 2012.

[22] R. Vershynin, “Introduction to the non-asymptotic analysis of ran-
dom matrices,” in Compressed Sensing, Theory and Applications,
eds. Y.C. Eldar and G. Kutyniok, ch. 5, pp.210–268, Cambridge
University Press, http://www-personal.umich.edu/˜romanv/papers/
non-asymptotic-rmt-plain.pdf, 2012.

[23] C. Gentry, S. Halevi, and N.P. Smart, “Better bootstrapping in fully
homomorphic encryption,” Public Key Cryptography — PKC 2012,
Lecture Notes in Computer Science, vol.7293, pp.1–16, Springer,
2012.

[24] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lat-
tices and learning with errors over rings,” Advances in Cryptol-
ogy — EUROCRYPT 2010, Lecture Notes in Computer Science,
vol.6110, pp.1–23, Springer, 2010.

http://crypto.stanford.edu/craig
http://dx.doi.org/10.1145/1536414.1536440
http://dx.doi.org/10.1007/978-3-642-13190-5_2
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1109/focs.2011.12
http://dx.doi.org/10.1145/2090236.2090262
http://dx.doi.org/10.1007/978-3-642-32009-5_50
http://dx.doi.org/10.1007/978-3-642-32009-5_50
http://dx.doi.org/10.1145/2213977.2214086
http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1007/978-3-642-13013-7_25
http://dx.doi.org/10.1007/978-3-642-36362-7_1
http://dx.doi.org/10.1007/978-3-540-85174-5_31
http://dx.doi.org/10.1145/1060590.1060603
http://dx.doi.org/10.1145/2554797.2554799
http://dx.doi.org/10.1007/978-3-662-44371-2_17
http://dx.doi.org/10.1145/12130.12131
http://www.cs.princeton.edu/courses/archive/spring10/cos433
http://dx.doi.org/10.1007/978-3-642-19571-6_14
http://dx.doi.org/10.1145/1536414.1536461
http://dx.doi.org/10.1007/978-3-642-22792-9_26
http://dx.doi.org/10.1007/978-3-642-29011-4_41
http://www-personal.umich.edu/~romanv/papers/non-asymptotic-rmt-plain.pdf
http://dx.doi.org/10.1007/978-3-642-30057-8_1
http://dx.doi.org/10.1007/978-3-642-13190-5_1

82
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.1 JANUARY 2016

Ryo Hiromasa received the B.E. degree
from Ritsumeikan University, and M.E. degree
from Kyoto University, Kyoto, Japan, in 2011
and 2013, respectively. Currently, he is a doctor
course student of Kyoto University. His research
interests are cryptography and information secu-
rity.

Masayuki Abe received the M.E. from
Science University of Tokyo in 1992 and Ph.D.
from Tokyo University in 2002. He is a senior
distinguished researcher of NTT Secure Plat-
form Laboratories. His research interest in-
cludes design of cryptographic primitives and
protocols. He is a member of IACR and IEICE.

Tatsuaki Okamoto received the B.E., M.E.,
and Dr.E. degrees from the University of Tokyo,
Tokyo, Japan, in 1976, 1978, and 1988, respec-
tively. He is a Fellow of NTT, Nippon Telegraph
and Telephone Corporation. He is presently en-
gaged in research on cryptography and informa-
tion security. Dr. Okamoto is a guest professor
of Kyoto University.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

