
Copyright c⃝The Institute of Electronics,
Information and Communication Engineers

SCIS 2014 The 31st Symposium on
Cryptography and Information Security
kagoshima, Japan, Jan. 21 - 24, 2014

The Institute of Electronics,
Information and Communication Engineers

Multilinear Maps on LWE

Ryo Hiromasa∗ Masayuki Abe† Tatsuaki Okamoto†

Abstract— Bilinear elliptic curve pairings are widely used in cryptography. Extending them to multilinear
analogues is a long standing open problem. Two plausible candidates of multilinear maps have been already
proposed by Garg, Gentry and Halevi, and by Coron, Lepoint and Tibouchi. They implicitly rely on the hardness
of the short integer solution problem on ideal lattices, and the error-free approximate greatest common divisor
problem, respectively. We construct new multilinear maps from fully homomorphic encryption (FHE) proposed
by Gentry, Sahai, and Waters. The FHE is based on the learning with errors assumption (that is a bit more
standard than the above hardnesses), and so are our maps.

Keywords: fully homomorphic encryption, multilinear maps, learning with errors

1 Introduction
1.1 Background

Bilinear elliptic curve pairings are widely used in cryp-
tography. Extending them to multilinear maps is a long
standing open problem. Candidate constructions were re-
cently proposed in the innovational work by Garg, Gentry
and Halevi [GGH13a]. After that, Coron, Lepoint and Ti-
bouchi discovered an alternative construction [CLT13].

The essential difference with the bilinear maps is about
the encoding α · g of an element α. While the bilinear maps
encode elements deterministically, the encoding of the mul-
tilinear maps is noisy. The multilinear maps is bounded to
a polynomial degree. The encoding noise grows with the
degree, and the noise overwhelms the signal for very high
degree. This is like for ciphertexts in somewhat homomor-
phic encryptions. The security of their construction is based
on the Diffie-Hellman-like assumption, which has rigorous
scrutinies but have not been known to be reduced to estab-
lished assumptions.

We introduce a brief overview of the GGH construction
[GGH13a]. The construction works in the polynomial ring
R. It generates a ring element g ∈ R, and has the princi-
pal prime ideal p = ⟨g⟩ ⊆ R. In addition, it has an integer
modulus q ∈ Z and a secret ring element z ∈ R. The term
α · g in the discrete-log system is viewed as the encoding
of the plaintext element α. In the GGH construction, the
plaintext is played by the elements in the quotient ring R/p.
To encode the plaintext, the construction divide it by z. The
construction provides many levels of encodings: the level-i
encoding of a coset ep = e + p is formed by c/zi mod q
where c ∈ ep is short. One can add and multiply the en-
codings as long as the size of the numerator is shorter than
q. In particular, the product of κ level-1 encodings yields a
level-κ encoding. To test if two encodings at the maximum
level κ have the same coset, the GGH construction defines
a certain parameter, called the zero-testing parameter. The
∗ Kyoto University
† NTT and Kyoto University

zero-testing parameter, which is included in public parame-
ters, is the element pzt = h · zκ/g mod q for a small h ∈ R.
Multiplying the encoding of 0 by pzt results in a small ele-
ment, while multiplying the encoding of non-zero element
by pzt results in a large element. Therefore one can distin-
guish if two encodings encodes the same coset.

Multilinear maps have many applications, most notably
program obfuscation [BGK+13, BR13a, BR13b, GGH+13b,
PTS13]. The goal of program obfuscation is to make a com-
puter program unintelligible for hiding its implementation
details, while preserving its functionality.

1.2 Our Results
We construct new multilinear maps from fully homomor-

phic encryption (FHE) proposed by Gentry, Sahai, and Wa-
ters [GSW13]. The FHE is based on the learning with er-
rors assumption, and so are our maps. This is a bit more
standard than what the others assume.

• The GGH construction relies on the conjectured hard-
ness of the short integer solution (SIS) problem on
ideal lattices. In a nutshell, the SIS problem is to
find a short vector in a lattice. Given parameters and
a challenge in the graded Diffie-Hellman assumption
(described in Section 2.4) for the GGH construction,
an adversary can compute a (not short) basis for the
principal ideal p = ⟨g⟩. Solving the SIS problem im-
plies that one can obtain a short element in p. With the
help of the short element, as described in [GGH13a],
one can verify the challenge in the GDDH assump-
tion.

• In the CLT construction [CLT13], level-0 encodings
are ciphertexts similar to the batch variant of FHE
based on integers [CCK+13]. Its public parameters
include the set of level-0 encodings that encode ran-
dom secret plaintexts. The construction requires that
the level-0 encodings do not leak any information about
the secrets. For giving this assurance, the CLT con-

1

struction implicitly relies on the hardness of the error-
free approximate common divisor problem.

1.3 Our Techniques
In [GSW13], Gentry et al. proposed a very simple FHE

(In the following, we call it GSW-FHE.), which is easy to
write, does not have additional procedures to reduce noise,
and so is asymptotically faster than other FHE (based on
the standard LWE assumption). GSW-FHE has ciphertexts
formed by matrices C ∈ ZN×N

q for N ∈ N and a modulus
q ∈ Z. Let t ∈ ZN

q be a secret key. C and t satisfy the
equation Ct = α · t + e mod q for a plaintext α ∈ Zq and
a noise vector e ∈ ZN

q . One can decrypt α correctly as long
as e is small. Let C1,C2 be two ciphertexts with plaintexts
α1, α2 and noise vectors e1, e2. For addition, we have

(C1 + C2)t = (α1 + α2) · t + (e1 + e2) mod q.

For multiplication, we have

(C1C2)t = C1(α2 · t+e2) = α1α2 · t+ (α2e1+C1e2) mod q.

In the above two equations, the decryption is correct as long
as the final noise terms are small.

Roughly speaking, our encodings are formed by the GSW-
FHE ciphertext divided by an integer z ∈ Zq. A level-0 en-
coding is just a GSW-FHE ciphertext C, and a level-i encod-
ing is C/zi. It is easy to see that one can add and multiply
the encodings. We define the permuted secret key tperm and
permuted public key Bperm such that for a noise vector e and
a ciphertext C that encrypts α by Bperm, we have

Ctperm = α · tperm + e mod q.

This is similar to the equation related to the normal secret
key, but the decryption is jammed by the permutation. We
define the zero-testing parameter as pzt = zk · tperm mod q.
Given a level-κ (that is the maximum level) encoding U =
C/zκ that encodes a plaintext α and has a noise vector e, we
have

w = Upzt =
U
zκ
· zκ · tperm = Utperm = α · tperm + e mod q.

We can see that w is small if α = 0, and large otherwise.
Therefore, by subtracting two encodings and multiplying
the result by the zero-testing parameter, one can distinguish
if they contain the same plaintext.

2 Preliminaries
2.1 Notations

We denote the set of integers by Z and the set of natu-
ral numbers by N. Let G be some group and P be some

probability distribution, then we use a
U←− G to denote that

a is chosen from G uniformly at random, and use b
R←− P to

denote that b is chosen along P. We take all logarithms to
the base 2, unless otherwise noted. We let negl(λ) denote a
negligible function of λ. We use standard big-O notation to
classify the growth of functions. For two randam variables
X,Y , ∆(X,Y) := 1/2|Pr[X = x] − Pr[Y = y]| represents

the statistical distance between X and Y , and for a security
parameter λ the notation X

s≈ Y refer that ∆(X,Y) ≤ 2−λ.
We assume that vectors are in column form and are writ-

ten by using bold lower-case letters, e.g., x. The ith ele-
ment of a vector is denoted by xi. We let the length of vec-
tors be the l∞ norm of the vectors and denote it by ∥ x ∥.
The inner product between two vectors is denoted by ⟨x, y⟩.
Matrices are written by using bold capital letters, e.g., X,
and the ith column vector of a matrix is denoted by xi. For
a matrix X ∈ Rm×n, the notation XT ∈ Rn×m denotes the
transpose of X. For two matrices A ∈ Rm×n1 and Bm×n2 ,
[A ∥ B] ∈ Rm×(n1+n2) denotes the concatenation of A with B.
When we refer to the n × n identity matrix, we denote it by
In.

2.2 Graded Encoding System
Garg et al. [GGH13a] construct the graded encoding sys-

tem to achieve multilinear maps. The formal definition of
the system is like below.

Definition 2.1 (κ-Graded Encoding System). A κ-graded
encoding system for a ring R is a system of sets S = {S (α)

i ⊆
{0, 1}∗ : 0 ≤ i ≤ κ, α ∈ R} with the following properties:

1. For every i ∈ N, the sets {S (α)
i : α ∈ R} are disjoint.

2. There are associative binary operations ’+’ and ’−’
(on {0, 1}∗) such that for every α1, α2 ∈ R, every index
i ∈ [κ], and every u1 ∈ S (α1)

i and u2 ∈ S (α2)
i , it holds

that

u1 + u2 ∈ S (α1+α2)
i and u1 − u2 ∈ S (α1−α2)

i

where α1+α2 and α1−α2 are addition and subtraction
in R.

3. There is an associative binary operation ’×’ (on {0, 1}∗)
such that for every α1, α2 ∈ R, every index i1, i2 with
0 ≤ i1, i2 ≤ κ, and every u1 ∈ S (α1)

i1
and u2 ∈ S (α2)

i2
, it

holds that
u1 × u2 ∈ S (α1·α2)

i1+i2

where α1 · α2 is multiplication in R.

2.3 Procedures for Manipulating Encodings
Garg et al. gave the instantiation to the above encod-

ing system. Unlike the other encoding systems [GGH13a,
CLT13], our instantiation allows users to sample a level-0
encoding for any plaintext element, so we add the interface
to the sampling algorithm.

Instance generation. Given as input parameters λ and κ,
the instance generation algorithm InstGen outputs parame-
ters params for graded encoding systems and a zero-testing
parameter pzt.

Sampling level-zero encodings. The sampling algorithm
Samp takes as input an plaintext element α ∈ R, and outputs
a level-0 encoding U ∈ S (α)

0 for α.

Encoding. The algorithm Encode takes as input a level
i and a level-0 encoding C ∈ S (α)

0 , and outputs a level-i
encoding Ui ∈ S (α)

i for the same α as C.

2

Addition and negation. Given as input two encodings U1 ∈
S (α1)

i and U2 ∈ S (α2)
i , it holds that Add(params,U1,U2) ∈

S (α1+α2)
i and Neg(params,U1,U2) ∈ S (α1−α2)

i .

Multiplication. Given as input two encodings U1 ∈ S (α1)
i1
,U2 ∈

S (α2)
i2

such that i1 + i2 ≤ κ, we have Mult(params,U1,U2) ∈
S (α1α2)

i1+i2
.

Zero-testing. The zero-testing procedure isZero takes as
input a level-κ encoding Uκ ∈ S (α)

κ and a zero-testing pa-
rameter pzt, and outputs 1 if Uκ ∈ S (0)

κ and 0 otherwise.

Extraction. Given as input a zero-testing parameter pzt and
a level-κ encoding U ∈ S (α)

κ for α ∈ R, the algorithm Extract
outputs a string s ∈ {0, 1}λ that has the following properties:

1. For any α ∈ R, let U,U′ ∈ S (α)
κ .

Extract(params,pzt,U) = Extract(params,pzt,U′).

2. A distribution

{Extract(params, pzt,U) ∈ {0, 1}λ | α ∈ R,U ∈ S (α)
κ }

is nearly close to uniform over {0, 1}λ.

2.4 Hardness assumptions
Here we introduce assumptions that we mention in this

paper.

The Learning with Errors Assumption. The learning with
errors (LWE) assumption was introduced by Regev [Reg05].

Definition 2.2 (LWE). For a security parameter λ, let n :=
n(λ) be an integer dimension, let q := q(λ) ≥ 2 be an in-
teger modulus, and let χ := χ(λ) be a discrete Gaussian
distribution over Z. The LWE assumption is that it is dif-
ficult to distinguish the following two distributions: In the
first distribution, a tuple (ai, bi) is sampled from uniform

over Zn
q×Zq. In the second distribution, s

U←− Zn
q, and then a

tuple (ai, bi) is sampled by sampling ai
U←− Zn

q, ei
R←− χ, and

setting bi := ⟨ai, s⟩ + ei mod q.

The Graded Decisional Diffie Hellman Assumption. The
graded decisional Diffie-Hellman (GDDH) assumption is a
multilinear analogue of the bilinear decisional Diffie-Hellman
(BDDH) assumption.

We consider the following process.

1. (params,pzt)
R←− InstGen(1λ, 1κ).

2. Ci
R←− Samp(params) for i = 1, . . . , κ + 1.

3. Ui
R←− Encode(params, 1,Ci) for i = 1, . . . , κ + 1.

4. Ĉ
R←− Samp(params).

5. Ũ = Cκ+1 ×
∏κ

i=1 Ui.
6. Û = Ĉ ×∏κi=1 Ui.

Definition 2.3 (GDDH). The GDDH assumption is to dis-
tinguish the following two distributions:

DGDDH = {(params,pzt, {Ui}i∈[κ+1], Ũ)},
DRAND = {(params,pzt, {Ui}i∈[κ+1], Û)}.

The GDDH assumption states that for any efficient adver-
saryA and a security parameter λ,

|Pr[A(DGDDH)→ 1] − Pr[A(DRAND)→ 1]| < negl(λ).

2.5 Min-Entropy, Leftover Hash Lemma, Strong Ran-
domness Extractor

Definition 2.4 (Min-Entropy). A distribution D has min-
entropy, denoted by H∞(D) ≥ k, if

max
d

R←−D
Pr[D = d] ≤ 2−k.

We introduce a matrix variant of Leftover Hash Lemma
(LHL) described in [GKPV10].

Lemma 2.1 (A Matrix Variant of LHL). Let n = n(λ), q =
q(λ), and D be the distribution over Zn

q with min-entropy k.
For m log q ≤ k − 2λ + O(1),

(Cs, s)
s≈ (u,U),

where C
U←− Zm×n

q , s
R←− D, u

U←− Zm
q , and U

U←− Zm×n
q .

We also recall the definition of strong randomness extrac-
tors [NZ96]. We borrow the definition from [DORS08].

Definition 2.5 (Strong Randomness Extractor). Let Ext :
{0, 1}n → {0, 1}l be a probabilistic polynomial time func-
tion that uses r bits of randomness. We say that Ext is a
(m, 2−λ)-strong randomness extractor if for all min-entropy

m distributions W on {0, 1}n, w
R←− W, x

U←− {0, 1}r, and

u
U←− {0, 1}l

(Extx(w), x)
s≈ (u, x).

The extractor Ext can extract at most l = m − 2λ + O(1)
bits.

3 Underlying FHE
We now introduce the underlying encryption scheme. Our

encoding system is constructed from FHE proposed by Gen-
try, Sahai and Waters [GGH13a]. We first introduce some
algorithms to manipulate vectors, and then describe the en-
tire scheme.

3.1 Vector Decomposition
The GSW-FHE scheme uses some algorithms to trans-

form a vector. Let gT := (1, 2, 22, . . . , 2⌈log q⌉−1) and let
G := gT ⊗ In.

• BitDecompq(x): For a vector xT = (x1, . . . , xn) ∈ Zn
q,

let bi, j ∈ {0, 1} be such that xi =
∑⌈log q⌉−1

j=0 2 j · bi, j.
Output the vector

(b1,0, . . . , b1,⌈log q⌉−1, . . . , bn,0, . . . , bn,⌈log q⌉−1) ∈ {0, 1}n·⌈log q⌉.

3

• Powersof2q(y): For a vector y ∈ Zn
q, output yT G ∈

Z
n·⌈log q⌉
q .

• Combineq(z): For a vector z ∈ Zn·⌈log q⌉
q , output zT GT ∈

Zn
q.

• Flattenq(z): For a row vector z ∈ Zn·⌈log q⌉
q , output

BitDecompq(Combineq(z)) ∈ {0, 1}n·⌈log q⌉.

For a matrix X, let BitDecompq(X), Combineq(X), or
Flattenq(X) be the matrix formed by applying the operation
each row of X separately.

The above vector transformation algorithms satisfy the
following conditions.

• ⟨BitDecompq(x),Powersof2q(y)⟩ = ⟨x, y⟩.

• For any vector z ∈ ZN ,

⟨z,Powersof2q(y)⟩ = ⟨Combineq(z), y⟩
= ⟨Flattenq(z),Powersof2q(y)⟩.

3.2 The GSW-FHE
The GSW-FHE scheme [GSW13] consists of six algo-

rithms GSW.{KeyGen,Enc,Dec,MPDec,Add,Mult}, which
are defined as follows:

• GSW.KeyGen(1λ, 1κ): Choose a modulus q := q(λ, κ),
a lattice dimension n := n(λ, κ), a parameter m :=
O(n log q), and a discrete Gaussian distribution χ :=
χ(λ, κ) appropriately for the LWE assumption. Let
l := ⌈log q⌉ and N := (n + 1) · l. Generate a matrix

A
U←− Zm×n

q and a secret vector s
U←− Zn

q, and sample a

noise vector e
R←− χm. Compute b := As + e mod q,

and set
B := [b ∥ A] ∈ Zm×(n+1)

q .

let t := Powersof2q(1,−s). Return paramsFHE :=
(n, q,m, l, n, χ), pk := BitDecompq(B) and sk := t.

• GSW.Encpk(α): To encrypt a message α, choose a

uniform matrix R
U←− {0, 1}N×m and return

C := Flatten(α · IN +R ·BitDecompq(B)) ∈ {0, 1}N×N .

• GSW.Decsk(C): We have

Ct := α · t + ê,

where ê = Re is a small noise. Let c be the l − 1th
row of C. Return 0 if |⟨c, t⟩| < q/8, and 1 otherwise.

• GSW.MPDecsk(C): The first l − 1 coefficients of t
are 1, . . . , 2l−2. Suppose that êt = (ê1, . . . , êl−1) is a
small noise vector, and gt = (1, 2, . . . , 2l−2), then the
first l− 1 coefficients of Ct are α · g+ ê. Then we can
extract the least significant bit of α from

α · 2l−2 + êl−1 = α0 · 2l−2 + êl−1 mod 2l−1,

and the next least significant bit α1 from (α − α0) ·
2l−3 + êl−2 mod 2l−1 as well.

• GSW.Add(C1,C2): To add two ciphertexts, output

Cadd := Flatten(C1 + C2).

• GSW.Mult(C1,C2): To multiply two ciphertexts, re-
turn

Cmult := Flatten(C1 · C2).

Definition 3.1 (Noise of the Ciphertext). For every C ∈
{0, 1}N×N , s ∈ Zn

q, and m ∈ Zq, we define the noise of C
as

noiseα,t(C) :=∥ (C − α · IN)t ∥ .

4 Graded Encoding System on LWE
In this section, we first show the permuted key generation

procedure for GSW-FHE, and then construct the graded en-
coding system on the LWE assumption.

4.1 Permuted Key Generation for GSW-FHE
Definition 4.1 (l-blockwise permutation). A permutation
P ∈ {0, 1}n·l is l-blockwise if for a n × n permutation ma-
trix Pn ∈ {0, 1}n×n,

P = Il ⊗ Pn.

When we let l := ⌈log q⌉, we note that for any l-blockwise
permutation P and matrix X ∈ ZN×N

q ,

Flattenq(XP) = Flattenq(X)P.

The following permuted key generation procedure out-
puts a pair of keys jammed by the l-blockwise permutation.

• GSW.KeyGen′(1λ, 1κ): Choose a modulus q := q(λ, κ),
a lattice dimension n := n(λ, κ), a parameter m :=
O(n log q), and a discrete Gaussian distribution χ :=
χ(λ, κ) appropriately for the LWE assumption. Let
l := ⌈log q⌉ and N := (n + 1) · l. Generate a matrix

A
U←− Zm×n

q and a secret vector s
U←− Zn

q, and sample a

noise vector e
R←− χm. Compute b := As + e mod q,

and set
B := [b ∥ A] ∈ Zm×(n+1)

q .

Let t := Powersof2q(1,−s) ∈ ZN
q . Choose a random

l-blockwise permutation P ∈ {0, 1}N×N . Set Bperm =

BitDecompq(B)·PT and tperm = Pt. Return paramsFHE :=
(n, q,m, l, n, χ), pk := Bperm and sk := tperm.

Lemma 4.1. For (Bperm, tperm)
R←− GSW.KeyGen′(1λ, 1κ)

and α ∈ Zq, let C = GSW.EncBperm (α). We have

Ctperm = α · tperm + ê,

where ê is a small noise vector.

Proof. For a random matrix R
U←− {0, 1}N×m, we have C =

Flattenq(α · IN + RBperm).

Ctperm = Flattenq(α · IN + RBperm) · Pt

= Flattenq(α · P + R · BitDecompq(B) · PT P) · t
= α · Pt + R · (BitDecompq(B)t)
= α · tperm + ê,

where ê = Re. □

4

Lemma 4.2. Let N be the integer that defines the form of
ciphertexts (which are N by N matrices), T be the upper
bound on fresh plaintexts, B be the upper bound on fresh
ciphertexts, and (Bperm, tperm) be a pair of keys generated by

GSW.KeyGen′. For α1, α2 ∈ Zq, let C1
R←− GSW.EncBperm (α1)

and C2
R←− GSW.EncBperm (α2). Then we have

GSW.Add(C1,C2)tperm = (α1 + α2) · tperm + eadd,

GSW.Mult(C1,C2)tperm = (α1α2) · tperm + emult,

where eadd and emult are the vectors with ∥ eadd ∥< 2B and
∥ emult ∥< (N + T)B.

Proof. This is immediately from Lemma 4.1. □

4.2 Our Construction
Our graded encoding system consists of seven algorithms

LWEMMP.{InstGen, Samp, Encode, Add, Mult, isZero,
Extract}.

Instance generation:
(paramsMMP,pzt)

R←− LWEMMP.InstGen(1λ, 1κ). The in-
stance generation procedure first generates GSW-FHE pa-
rameters and keys

(paramsFHE ,Bperm, tperm)
R←− GSW.KeyGen′(1λ, 1κ).

A secret integer z is chosen uniformly at random from Zq.
Let r := log q + 3λ. To encode at higher levels, we set
B′perm := BitDecompq([As ∥ A])PT (A and s are used in

GSW.KeyGen′), choose Ri
U←− {0, 1}N×m for i = 1, . . . , r,

and publish:

• {Xi := Flattenq(RiB′perm/z)}i∈[r],

• Y := Flattenq(GSW.EncBperm (1)/z).

We choose a random seed s for a strong randomness extrac-
tor. The instance generation procedure LWEMMP.InstGen
outputs parameters and a zero-testing parameter as:

• params := (n, q,m,N,Bperm, {Xi}i∈[r],Y, s),

• pzt := zκ · tperm.

Sampling level-zero encodings:
C

R←− LWEMMP.Samp(params, α). A level-0 encoding is
a GSW-FHE ciphertext. To sample a level-0 encoding, this
procedure takes as input a plaintext element α ∈ Zq, and just
outputs

C
R←− GSW.EncBperm (α).

Encoding at higher levels:
Ui

R←− LWEMMP.Encode(params, i,C). To encode a level-
0 encoding (i.e., GSW-FHE ciphertext) at higher levels, we
publish as part of our instance generation a level-1 random
encoding of 1, Y = C(1)/z = GSW.EncBperm (1)/z. Given

a level-0 encoding C0, we multiply it by Y. That is, we
compute U′1 = GSW.Mult(C0,Y). Note that we have U′1 =
Flattenq(C0Y).

In the GDDH assumption, every user keeps level-0 en-
codings secret and publishes level-1 encodings of the same
underlying plaintext. In the above encoding procedure, how-
ever, it is insufficient to hide the level-0 encodings from
the level-1 encodings: if det(Y) , 0, there exists the in-
verse matrix of Y, therefore C0 can be recovered from U′1 =
Flattenq(C0Y). Instead we choose a random vector f :=
(f1, . . . , fl) ∈ Zl

q, and randomize U′1 with a linear combina-
tion of {Xi}i∈[r]:

U1 = Flattenq(U′1 +
r∑

i=1

fi · Xi).

More generally, to generate a level-i encoding, we multiply
U1 by Y i − 1 times.

In the following two lemmas, we prove that the random-
ization term Flattenq(

∑l
i=1 fi ·Xi) is statistically close to uni-

form over {0, 1}N×N .

Lemma 4.3. Let P ∈ {0, 1}N×N be a l-blockwise permuta-

tion matrix, A
U←− Zm×n

q , and s
U←− Zn

q. Set B′ := [As ∥
A] ∈ Zm×(n+1)

q and B′perm := BitDecompq(B)PT , and choose

R
U←− {0, 1}N×m. Then we have

Flattenq(RB′perm)
s≈ U,

where U
U←− {0, 1}N×(n+1).

Proof. Let gT := (1, 2, 22, . . . , 2l−1) ∈ Zl and G := gT ⊗ In ∈
Zn×N . It holds that

Flattenq(RB′perm) = BitDecompq(Combineq(RBitDecompq(B′)))PT

= BitDecompq(RBitDecompq(B′)GT)PT

= BitDecompq(RB′)PT

Since the multiplication of PT does not change uniformity,

RB′ s≈ U′ for U′
U←− ZN×(n+1)

q implies that Flattenq(RB′perm)
s≈

U. Let rT
i ∈ {0, 1}m be the ith row vector of R. For any

i ∈ [N], we prove that (rT
i As, rT

i A)
s≈ (vi, vi) for vi

U←− Zq

and vi
U←− Zn

q. To prove this, we prove two statistical indis-
tinguishabilities:

• (rT
i As, rT

i A)
s≈ (vT

i s, vT
i),

• (vT
i s, vT

i)
s≈ (vi, vi).

They hold from the straightforward application of the left-
over hash lemma (Lemma 2.1). Therefore RB′ is statisti-
cally close to uniform, and so is Flattenq(RB′perm). □

Lemma 4.4. Let λ be the security parameter and r := log q+

3λ. For i = 1, . . . , r, choose Ri
U←− {0, 1}N×m and set {Xi :=

Flattenq(RiB′perm/z)}. Choose fT := (f1, f2, . . . , fr)
U←− Zr

q.

Then for U
U←− ZN×N

q it holds that

Flattenq(
r∑

i=1

fi · Xi)
s≈ U

5

Proof. Let Xi = (xi,1, . . . , xi,N)T and xT
i, j = (xi, j,1, . . . , xi, j,N).

We have
r∑

i=1

fi · Xi = ((x1,1, . . . , xr,1)f, · · · , (x1,N , . . . , xl,N)f).

For any i ∈ [r] and j ∈ [N], ⟨f, (x1,i, j, . . . , xr,i, j)⟩ is statisti-
cally close to uniform over Zq from the parameter settings
and the leftover hash lemma. □

Adding and Multiplying encodings:
LWEMMP.{Add(params, ui,u′i),Mult(params, ui,u′i)}. The
level-i encodings are GSW-FHE ciphertexts divided by some
integer zi. To output the addition/multiplication of the input
encodings, the procedures just respectively run GSW.Add
and GSW.Mult that take the two encodings as inputs.

Zero testing:
LWEMMP.isZero(params,pzt,Uκ)

?
= 0/1. Because of the

additive homomorphism of encodings, we can test equality
between encodings by subtracting them and testing for zero.
To test if Uκ = C/zκ encodes 0, we just multiply it by the
zero-testing parameter pzt, and check whether the resulting
vector w := Uκpzt is short. That is,

LWEMMP.isZero(params,pzt,Uκ) =
{

1 if ∥ w ∥< q
8

0 otherwise.

For R ∈ {0, 1}N×m and Uκ = C/zκ = Flattenq(α · In +

RBperm)/zκ, we have

w = Uκpzt =
C
zκ
· zκ · tperm = Ctperm = α · tperm + e.

Therefore w = e is small if α = 0, and w must be large
otherwise.

Lemma 4.5 (Correctness of Zero-testing). For the modulus
q chosen as in the instance generation, let U(α)

κ be a level-κ
encoding of α ∈ Zq, and pzt be the zero-testing parameter.
We have ∥ U(0)

κ pzt ∥< q/8.

Proof. This is immediately from the above argument and
the parameter settings. □

Extraction: s
R←− LWEMMP.Extract(params,pzt,Uκ). To

extract the random function of the plaintext element in a
level-κ encoding Uκ = Cκ/zκ, we just multiply it by pzt,
collect the three most significant bits of the N coefficients
of the result, and apply a strong randomness extractor for
them. That is,

LWEMMP.Extract(params,pzt,Uκ) = Exts(msbs3(Uκpzt)),

where Exts is a (⌊log q⌋, 2−λ)-strong randomness extractor,
msbs3 extracts the three most significant bits of the result.

Lemma 4.6. Let pzt be a zero-testing parameter, and let
Ext : {0, 1}3N → {0, 1}⌊log q⌋−2λ+O(1) be a (⌊log q⌋, 2−λ)-strong
randomness extractor. For any α, α′ ∈ Zq, let U(α)

κ and U(α′)
κ

be their encodings at the level κ, respectively. If α = α′,
then Exts(msbs3(U(α)

κ)) and Exts(msbs3(U(α′)
κ)) extract the

same nearly uniform bit-string.

Proof. If α = α′, by Lemma 4.5, we have

∥ U(α)
κ pzt − U(α′)

κ pzt ∥=∥ (U(α)
κ − U(α′)

κ)pzt ∥<
q
8
,

and so expect U(α)
κ pzt and U(α′)

κ pzt to agree on their log q −
log q/8 = 3 most significant bits 1. Let X be the probability
distribution of msbs3(U(α)

κ pzt) (and msbs3(U(α′)
κ pzt)). Then

we have H∞(X) ≥ ⌊log q⌋. Therefore Exts(msbs3(U(α)
κ pzt))

and Exts(msbs3(U(α′)
κ pzt)) can extract the same nearly uni-

form bit-string of length at most ⌊log q⌋ − 2λ + O(1). □

4.3 Parameter Settings
We list constraints of the parameters for our maps.

• Consider the multipartite Diffie-Hellman key exchange
(mDH-KE) (See Appendix A for details.) setting.
Let C be a level-0 encoding with plaintext α, T be
the upper bound on the fresh plaintexts, and B be the
upper bound on the noise of fresh ciphertexts (i.e.,

level-0 encodings). Suppose U1 = Flatten(C1/z)
R←−

LWEMMP.Enc(params,C, 1), then

noiseα,s(C1) ≤ (N + 1)B.

As described in [BV13], multiplication of GSW-FHE
ciphertexts increases the noise in an asymmetric man-
ner. The product of κ level-1 encodings Uκ = Flatten(Cκ/z)
(which has the plaintext ακ) has the noise at most

noiseακ ,s(Cκ) ≤ (T κ−1N2 + T κN + T κ−1)B.

To keep the correctness of the multilinear maps oper-
ations (addition and multiplication) the right side of
the inequality needs to be less than q/8.

• In our construction, when given an encoding, an ad-
versary can obtain a set of elements that includes the
plaintext of the encoding. In the mDH-KE with κ
parties, to avoid the obvious attack, we should take
n = Ω(2λ/κ).

• For the sake of the 2λ security against known attacks,
n (and so N) must increase linearly with log(q/B).
This implies that q/B grows more like exp(κ + log κ).

• Applying the leftover hash lemma in Lemma 4.4 re-
quires that r := log q + 3λ.

• The security of GSW-FHE requires that the rank m of
the public matrix A ought to be 2n log q.

4.4 A Note on Some Decisional Problems against the
GGH’s Weak Discrete Log Attack

The weak discrete log attack [GGH13a] is to compute a
randomized plaintext element of a challenge at the strictly
lower level than κ from public information (e.g., the chal-
lenge in the security assumption, the zero-testing parameter,
and the level-1 encodings of 1 and 0).

1 Otherwise, we must have ∥ (U(α)
κ − U(α′)

κ)pzt ∥≥ q/8, and hence the
three most significant bits of the corresponding Uκpzt and U′κpzt must be
different.

6

In the above attack, as described in [CLT13], the GGH
encodings [GGH13a] do not support some decisional prob-
lems (e.g., the decisional subgroup problem using composite-
order maps, and the decisional linear (DLIN) problem) in
the lower level (below κ), while the CLT construction does
so.

Since the LWE assumption implies that the randomized
plaintext element leaks no information about the plaintext in
our construction, it seems to have the tolerance for the weak
discrete log attack in the DLIN and subgroup problems.

4.5 Security
We instantiate the GDDH assumption for our maps, which

can be described like below.

1. (params = (n, q,m,N,B,X,Y),pzt)
R←− LWEMMP.InstGen(1λ, 1κ).

2. For i = 1, . . . , κ + 1,

(i) αi
U←− Zq.

(ii) Ai
R←− GSW.EncB(αi).

(iii) R
U←− {0, 1}N×m.

(iv) Ui = AiY + BitDecompq(RX).

3. α
U←− Zq.

4. Â
R←− GSW.EncB(α).

5. Ũ = Aκ+1 ×
∏κ

i=1 Ui.
6. Û = Â ×∏κi=1 Ui.

Definition 4.2 (GDDH). The GDDH problem is to distin-
guish the following two distributions:

DGDDH = {(params,pzt, {Ui}i∈[κ+1], Ũ)}
DRAND = {(params,pzt, {Ui}i∈[κ+1], Û)}.

The GDDH assumption states that for any efficient adver-
saryA and a security parameter λ,

|Pr[A(DGDDH)→ 1] − Pr[A(DRAND)→ 1]| < negl(λ).

5 Conclusion
We constructed the multilinear maps on LWE. The se-

curity of our maps was based on the DDH-like assump-
tion, which is called the graded decisional Diffie-Hellman
(GDDH) assumption.

An interesting direction for future work is to reduce the
GDDH assumption for our maps to established assumptions,
such as LWE.

References
[BGK+13] Boaz Barak, Sanjam Garg, Yael Tauman

Kalai, Omer Paneth, and Amit Sahai. Pro-
tecting obfuscation against algebraic attacks.
Cryptology ePrint Archive, Report 2013/631,
2013. http://eprint.iacr.org/2013/

631.

[BL13] Alexandra Berkoff and Feng-Hao Liu. Leak-
age resilient fully homomorphic encryption.
Cryptology ePrint Archive, Report 2013/822,
2013. http://eprint.iacr.org/2013/

822.

[BR13a] Zvika Brakerski and Guy N. Rothblum. Ob-
fuscating conjunctions. Advances in Cryptol-
ogy - CRYPTO 2013, LNCS, 8043:416–434,
2013.

[BR13b] Zvika Brakerski and Guy N. Rothblum. Vir-
tual black-box obfuscation for all circuits via
generic graded encoding. Cryptology ePrint
Archive, Report 2013/563, 2013. http://
eprint.iacr.org/2013/563.

[BS03] Dan Boneh and Alice Silverberg. Applications
of multilinear forms to cryptography. Contem-
porary Mathematics, 324:71–90, 2003.

[BV13] Zvika Brakerski and Vinod Vaikuntanathan.
Lattice-based fhe as secure as pke. Cryptol-
ogy ePrint Archive, Report 2013/541, 2013.
http://eprint.iacr.org/2013/541.

[CCK+13] Jung Hee Cheon, Jean-Sébastian Coron, Jinsu
Kim, Moon Sung Lee, Tancrède Lepoint,
Mehdi Tibouchi, and Aaram Yun. Batch fully
homomorphic encryption over the integers.
Advances in Cryptology - EUROCRYPT 2013,
LNCS, 7881:315–335, 2013.

[CLT13] Jean-Sébastian Coron, Tancrède Lepoint, and
Mehdi Tibouchi. Practical multilinear maps
over the integers. Advances in Cryptology -
CRYPTO 2013, LNCS, 8042:476–493, 2013.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid
Reyzin, and Adam Smith. How to generate
strong keys from biometrics and other noisy
data. SIAM Journal on Computing, 38(1):97–
139, 2008.

[Gen09a] Craig Gentry. A FULLY HOMOMORPHIC
ENCRYPTION SCHEME. PhD thesis, Stan-
ford University, 2009. http://crypto.

stanford.edu/craig.

[Gen09b] Craig Gentry. Fully homomorphic encryption
using ideal lattices. STOC, pages 169–178,
2009.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi.
Candidate multilinear maps from ideal lat-
tices. Advances in Cryptology - EUROCRYPT
2013, LNCS, 7881:1–17, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mar-
iana Raykova, Amit Sahai, and Brent Wa-
ters. Candidate indistinguishability obfusca-
tion and functional encryption for all circuits.
FOCS, 2013.

7

[GKPV10] Shafi Goldwasser, Yael Kalai, Chris Peikert,
and Vinod Vaikuntanathan. Robustness of the
learning with errors assumption. ICS, 2010.

[GPV08] Craig Gentry, Chris Peikert, and Vinod
Vaikuntanathan. How to use a short basis:
Trapdoors for hard lattices and new crypto-
graphic constructions. STOC, pages 197–206,
2008.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters.
Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-
faster, attribute-based. Advances in Cryp-
tology - CRYPTO 2013, LNCS, 8042:75–92,
2013.

[MP12] Daniele Micciancio and Chris Peikert. Trap-
doors for lattices: Simpler, tighter, faster,
smaller. Advances in Cryptology - EURO-
CRYPT 2012, LNCS, 7237:700–718, 2012.

[NZ96] Noam Nisan and David Zuckerman. Random-
ness is linear in space. Journal of Computer
and Systeme Sciences, 52(1):43–53, 1996.

[PTS13] Rafael Pass, Sidharth Telang, and Karn Seth.
Obfuscation from semantically-secure multi-
linear encodings. Cryptology ePrint Archive,
Report 2013/781, 2013. http://eprint.

iacr.org/2013/781.

[Reg05] Oded Regev. On lattice, learning with er-
rors, random linear codes, and cryptography.
STOC, pages 84–93, 2005.

A Multipartite Diffie-Hellman Key Excahnge
In [BS03], Boneh and Silverberg displayed how to imple-

ment multipartite Diffie-Hellman key exchange from multi-
linear maps. As in [GGH13a, CLT13], our construction can
be used to construct a one round N-way Diffie-Hellman key
exchange.

Let us consider N parties willing to share a secret string
s in the one-round 2 protocol. We recall the construction
by [GGH13a].

Setup(1λ, 1N). Takes as input a security parameter λ and the

number of party N, outputs (params,pzt)
R←− InstGen(1λ, 1N−1)

as the public parameters for the level N − 1.

Publish(params,pzt, i). Each party Pi generates a random

level-0 encoding Ci
R←− Samp(params) as a secret key, and

publishes as a public key the corresponding level-1 encod-

ing Ui
R←− Encode(params, i,Ci).

KeyGen(params,pzt, j,d j, {wi} j,i). Each party Pi computes
U = Ci ×

∏
j,i U j by the multiplication procedure Mult. To

2 The word “one-round” refers to the setting in which each party can broad-
cast one value to all other parties.

obtain a common secret string s, Pi invokes the extraction

routine, s
R←− Extract(params, pzt,U).

Theorem A.1 (Theorem 2, [GGH13a]). The protocol de-
scribed above is a one-round N-way Diffie-Hellman key ex-
change protocol if the GDDH assumption holds for the un-
derlying encoding scheme.

8

