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1 Introduction
Fully homomorphic encryption (FHE) allows us to eval-

uate any function over encrypted data by only using public
information. This can be used, for example, to outsource
computations to remote servers without compromising pri-
vacy. Since the breakthrough work by Gentry [Gen09a,
Gen09b], many different varieties of FHE have been pro-
posed [DGHV10, BV11a, BV11b, BGV12, Bra12, LTV12,
GSW13]. To date, the fastest (and simplest) FHE based
on the standard lattice assumption is the one by Gentry et
al. [GSW13] (in the following, we call this scheme GSW-
FHE). However, it is required to take a heavy cost for eval-
uating a large number of ciphertexts. The way to deal with
this issue is to pack multiple messages into one ciphertext.

Packing messages allows us to apply single-instruction-
multiple-data (SIMD) homomorphic operations to all en-
crypted messages. In the case where a remote server stores
encrypted data and we want to retrieve certain data from this
server, we first apply an equality function to every encrypted
data. If the stored data were packed into one ciphertext,
we can do that by only one homomorphic evaluation of the
equality function. Smart and Vercautren [SV10], for the first
time, showed that the message space of the ideal-lattice-
based FHE [Gen09a, Gen09b] (and polynomial-ring-based
FHE [BV11b, BGV12]) can be partitioned into a vector of
plaintext slots by applying the Kummer-Dedekind theorem
to the ideal generated by the plaintext moduli. On standard-
lattice-based FHE, Brakerski et al. [BGH13] packed mes-
sages in the FHE variant [BV11a,BGV12,Bra12] of Regev’s
encryption [Reg05], using the result in [PVW08] that de-
scribed the way to pack in [Reg05]. Cheon et al. [CCK+13]
observed that the integer-based FHE [DGHV10] can also
compute SIMD homomorphic operations.

1.1 Our Results
In this paper, we construct the first SIMD fully homo-

morphic encryption scheme based on [GSW13] that is se-
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cure under the standard lattice assumption. Our SIMD FHE
can encrypt a message vector into one ciphertext and homo-
morphically compute SIMD operations. All of the previous
SIMD FHE schemes have complex and expensive homo-
morphic multiplication algorithms involving the dimension
or modulus reduction. In our scheme, homomorphic SIMD
addition and multiplication are just matrix addition and mul-
tiplication.

1.2 Our Techniques
Peikert et al. [PVW08] showed that Regev’s encryption

[Reg05] based on the standard lattice assumption can be
converted into a scheme that can encrypt multiple messages
in one ciphertext. Using this technique, [BGH13] constructed
the standard-LWE based FHE [BV11a, BGV12] that can
also encrypt multiple messages and evaluate SIMD homo-
morphic operations. As described in [Bar10, Rot11], sym-
metric re-randomizable homomorphic encryption can sim-
ply be converted into an asymmetric one, and [BV14] intro-
duced that [GSW13] has the ability to re-randomize its ci-
phertexts. Our translation first constructs a symmetric SIMD
variant of [GSW13] along the lines of [PVW08, BGH13].
To transform it to an asymmetric one, we publish the sym-
metric encryption of all message vectors as the public key,
and then generate the ciphertext by re-randomizing the sym-
metric encryption corresponding to the message vector. Ob-
viously, our construction has the significantly large public
key (whose size is exponential in the number of encrypted
bits r!), so we can only set r = O(log λ).

Our transformation allows us to proceed SIMD homo-
morphic addition and multiplication in [GSW13], but is in-
sufficient to bring out the full potential of our scheme. We
now consider the following three gates r-Add, r-Mult, and
r-Permute: r-Add takes as input two ciphertexts that hold
messages (m1, . . . ,mr) and (m′1, . . . ,m

′
r), respectively, and

outputs a new ciphertext with the message (m1+m′1, . . . ,mr+

m′r); r-Mult takes as input the same messages as the above
and outputs a new ciphertext with the message (m1·m′1, . . . ,mr·
m′r); r-Permute transforms the ciphertext with (m1, . . . ,mr)
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into the one with (mπ(1), . . . ,mπ(r)) for a permutation π. Gen-
try et al. [GHS12] showed that the set of gates r-Add, r-
Mult, and r-Permute allows us to efficiently evaluate com-
plex circuits.

r-Add and r-Mult have already been implemented in our
SIMD scheme, so far. Constructing the plaintext-slot switch-
ing procedure to implement r-Permute is slightly non-trivial.
Let C be a packed ciphertext that encrypts the message vec-
tor (m1, . . . ,mr) under the secret key matrix S, and π be a
permutation. Every row of S, which we call sT

i for i =
1, . . . , r, corresponds to one of the encrypted messages mi,
and satisfies sT

i C = noise+mi · sT
i G for some fixed matrix G.

Note that in this paper we consider permutations of row vec-
tors in the matrix, that is, π(S) = [sπ(1) ∥ · · · ∥ sπ(r)]T . Let us
consider the decryption of C using the permuted secret key
π(S):

π(S)C = noise +


mπ(1) · sT

π(1)
...

mπ(r) · sT
π(r)

 G.

Since the decryption using π(S) disorders the messages and
secret keys, it is insufficient to publish a key switching gad-
get from π(S) to S similar to [BGH13]. To complete the
plaintext slot permutation procedure, we need to reorder
only the secret keys by π−1. Now we have seen from the
above that multiplying π(S) to the ciphertext under S leads
to the disordering of the secret keys by π. This tells us that
multiplying π(S) to the ciphertext under π−1(S) yields a de-
cryption under S. To reorder only the secret keys (i.e., with-
out reordering the messages), we publish something like a
ciphertext with the messages (1, . . . , 1) under π−1(S) (that is,
a key switching gadget from π−1(S) to S) and homomorphi-
cally multiply it to C from the right. This fixes the order of
the secret key vectors as π(π−1(S)) and multiplying the mes-
sages (1, . . . , 1) does not affect anything in the encrypted
message vector (mπ(1), . . . ,mπ(r)). One nice feature of our
plaintext-slot switching is not to suffer from the inconve-
nience of security as in [BGH13]: we do not have to use a
larger modulus than the underlying encryption scheme.

2 Preliminaries
We denote the set of natural numbers by N, the set of

integers by Z, and the set of real numbers by R. Let G be a
group andP be a probability distribution, then we use a

U←−G
to denote that a is chosen from G uniformly at random, and
use b

R←−P to denote that b is chosen along P. We take all
logarithms to base 2, unless otherwise noted.

We assume that vectors are in column form and are writ-
ten by bold lower-case letters, e.g., x, and the i-th element
of a vector is denoted by xi. We denote the ℓ∞ norm (the
maximum norm) of the vector x by ∥x∥∞, and the ℓ2 norm
(the Euclidean norm) of x by ∥x∥2. The inner product be-
tween two vectors is denoted by ⟨x, y⟩. Matrices are written
by bold capital letters, e.g., X, and the i-th column vector
of a matrix is denoted by xi. For a matrix X ∈ Rm×n, the
notation XT ∈ Rn×m denotes the transpose of X. For two
matrices A ∈ Rm×n1 and B ∈ Rm×n2 , [A ∥ B] ∈ Rm×(n1+n2)

denotes the concatenation of A with B. When we refer to
the n × n identity matrix, we denote it by In. For any vector

x ∈ Zn, we use y = [x]q to represent the vector for which
yi = xi mod q for every i ∈ [n].

2.1 Learning with Errors
The learning with errors (LWE) assumption was first in-

troduced by Regev [Reg05].

Definition 2.1 (DLWE). For security parameter λ, let n :=
n(λ) be an integer dimension, let q := q(λ) ≥ 2 be an in-
teger modulus, and let χ := χ(λ) be an error distribution
over Z. DLWEn,q,χ is the problem to distinguish the follow-
ing two distributions: In the first distribution, a tuple (ai, bi)
is sampled from uniform over Zn

q × Zq; In the second distri-

bution, s U←−Zn
q, and then a tuple (ai, bi) is sampled by sam-

pling ai
U←−Zn

q, ei
R←−χ, and setting bi := ⟨ai, s⟩ + ei mod q.

The DLWEn,q,χ assumption is that DLWEn,q,χ is infeasible.

Recall that GapSVPγ is the promise problem to distin-
guish between the case in which the lattice has a vector
shorter than r ∈ Q, and the case in which all the lattice vec-
tors are greater that γ ·r. SIVPγ is the problem to find the set
of short linearly independent vectors in a lattice. DLWEn,q,χ

has reductions to the standard lattice assumptions as fol-
lows. These reductions take χ to be a discrete Gaussian dis-
tribution DZ,αq (that is centered around 0 and has parameter
αq for some α < 1), which is statistically indistinguishable
from a B-bounded distribution (i.e., E[X] = 0 and |X| ≤ B)
for an appropriate B.

Corollary 2.1 (stated as Corollary 2.6 from [BV14] or Corol-
lary 2.1 from [Bra12]). Let q := q(n) ∈ N be a powers
of primes q := pr or a product of distinct prime numbers
q :=

∏
i qi (qi := poly(n) for all i), and let α ≥

√
n/q. If

there exists an efficient algorithm that solves (average-case)
DLWEn,q,DZ,αq ,

• there exists an efficient quantum algorithm that can
solve GapSVPÕ(n/α) and SIVPÕ(n/α) in the worst-case
for any n-dimensional lattices.

• if in addition we have q ≥ Õ(2n/2), there exists an effi-
cient classical algorithm that can solve GapSVPÕ(n/α)
in the worst-case for any n-dimensional lattices.

2.2 Subgaussian
A real random variable X is subgaussian with parameter

s if for all t ∈ R, its (scaled) moment generating function
holds E[exp(2πtX)] ≤ exp(πs2t2). Any B-bounded (cen-
tered) random variable X is subgaussian with parameter B ·√

2π. Subgaussian random variables have the following two
properties that can be easily obtained from the definition of
subgaussian random variables:

• Homogeneity: If the subgaussian random variable X
has parameter s, then cX is subgaussian with param-
eter cs.

• Pythagorean additivity: For two subgaussian random
variables X1 and X2 (that is independent from X1)
with parameter s1 and s2, respectively, X1+X2 is sub-

gaussian with parameter
√

s2
1 + s2

2.
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The above can be extended to vectors. A real random
vector x is subgaussian with parameter s if for all real unit
vectors u, their marginal ⟨u, x⟩ is subgaussian with parame-
ter s. It is clear from the definition that the concatenation of
subgaussian variables or vectors, each of which has parame-
ter s and is independent of the prior one, is also subgaussian
with parameter s. The homogeneity and Pythagorean addi-
tivity also holds from the linearity of vectors. It is known
that the euclidean norm of the subgaussian random vector
has the following upper bound.

Lemma 2.1 ( [Ver12]). Let x ∈ Rn be a random vector that
has independent subgaussian coordinates with parameter s.
Then there exists a universal constant C such that Pr[∥x∥2 >
C · s

√
n] ≤ 2−Ω(n).

To suppress the noise growth, Gentry et al. [GSW13]
made use of the procedure that decomposes a vector in bi-
nary representation. Alperin-Sheriff and Peikert [AP14] ob-
served that instead of the decomposition procedure, using
the following algorithm G−1 that samples a subgaussian ran-
dom vector allows us to re-randomize errors in ciphertexts
and tightly analyse the noise growth in [GSW13]. Let gT :=
(1, 2, 22, . . . , 2⌈log q⌉−1) and G := gT ⊗ In.

Lemma 2.2 ( [AP14], which is adapted from [MP12]). There
is a randomized, efficiently computable function G−1 : Zn

q →
Zn·⌈log q⌉ such that for any a ∈ Zn

q, x R←−G−1(a) is subgaussian
with parameter O(1) and a = [Gx]q

3 SIMD GSW-FHE
We translate [GSW13] to be able to evaluate SIMD ho-

momorphic operations. In Section 3.1, we present the SIMD
encryption scheme. How to permute its plaintext slots is
discussed in Section 3.2.

Our translation first constructs the symmetric SIMD scheme
of [GSW13] and then transforms it to an asymmetric one by
the method described in [Bar10, Rot11]. In addition, we
describe how to permute a packed plaintext vector in our
scheme.

3.1 Construction
Let λ be the security parameter. Our SIMD scheme is

parametrized by an integer lattice dimension n, integer mod-
ulus q, and a distribution χ over Z that is assumed to be sub-
gaussian , all of which depend on λ. We let ℓ := ⌈log q⌉,
m := O(n log q) 1 , and N := (n + r) · ℓ. Let r be the num-
ber of bits to be encrypted, which defines the message space
{0, 1}r. The ciphertext space is Z(n+r)×N

q . Our scheme uses
the rounding function ⌊·⌉2 that for any x ∈ Zq, ⌊x⌉2 out-
puts 1 if x is close to q/4, and 0 otherwise. Recall that
gT = (1, 2, . . . , 2ℓ−1) and G = gT ⊗ In.

• KeyGen(1λ, r): Set parameters n, q, m, ℓ, N, and χ
as described above. Sample a uniformly random ma-
trix A U←−Zn×m

q , secret key matrix S′ R←−χr×n, and noise

1 Rigorously, we must chose m := O((n + r) log q) from the leftover hash
lemma. In practical parameter settings, we will set n := Ω(λ) and r :=
O(log λ). This is why we chose m := O(n log q).

matrix E R←−χr×m. Let S := [Ir ∥ −S′] ∈ Zr×(n+r)
q . We

denote by sT
i the i-th row of S. Set

B :=
[(

S′A + E
A

)]
q
∈ Z(n+r)×m

q .

For all m ∈ {0, 1}r, first choose Rm
U←−{0, 1}m×N and

set

Pm :=

BRm +


m1 · sT

1
...

mr · sT
r

0

 G


q

∈ Z(n+r)×N
q .

Output pk := ({Pm}m∈{0,1}r , B) and sk := S.

• SecEncsk(m): Sample random matrices A′ U←−Zn×N
q

and E R←−χr×N , parse S = [Ir ∥ −S′], and output the
ciphertext

C :=


(

S′A′ + E
A′

)
+


m1 · sT

1
...

mr · sT
r

0

 G


q

∈ Z(n+r)×N
q .

• PubEncpk(m): Sample a random matrix R U←−{0, 1}m×N ,
and output the ciphertext

C := [BR + Pm]q ∈ Z(n+r)×N
q .

• Decsk(C): For i = 1, . . . , r, let ciℓ−1 be the iℓ − 1-th
column of C, and compute m′i := ⌊[⟨sT

i , ciℓ−1⟩]q⌉2 ∈
{0, 1}. Output (m′1, . . . ,m

′
r) ∈ {0, 1}r.

• C1 ⊕ C2: Output Cadd := [C1 + C2]q ∈ Z(n+r)×N
q as

the result of homomorphic addition between the input
ciphertexts.

• C1 ⊙ C2: Output Cmult := [C1G−1(C2)]q ∈ Z(n+r)×N
q

as the result of homomorphic multiplication between
the input ciphertexts.

In the following, we state the correctness of our SIMD
asymmetric encryption. The symmetric version can also be
proven as well.

Proposition 3.1. For every (pk, sk)
R←−KeyGen(1λ, r), m ∈

{0, 1}r, and C R←−PubEncpk(m) such that for all i ∈ [r], ∥sT
i C−

mi · sT
i G∥∞ < q/8, we have m = Decsk(C).

Proof. For i = 1, . . . , r, it holds that

sT
i C = sT

i

BR + BRm +


m1 · sT

1
...

mr · sT
r

0

 G


= eT

i (R + Rm) + mi · sT
i G.

Because of ∥eT
i (R + Rm)∥∞ < q/8 and 2ℓ−2 ∈ [q/4, q/2),

we have [⟨sT
i , ciℓ−1⟩]q ≈ q/4 if mi = 1, [⟨sT

i , ciℓ−1⟩]q ≈ 0
otherwise. □
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The following two propositions mentioning the security
of our scheme can be immediately proven from DLWEn,q,χ

(and the circular security assumption).

Proposition 3.2. Let S′ ∈ Zr×n be a matrix generated in
KeyGen, and A ∈ Zn×m, E ∈ Zr×m be a matrix generated in
SecEnc. Then, the distribution [(S′A+ E)T ∥ AT ]T is com-
putationally indistinguishable from uniform over Z(n+r)×N

q .

Proposition 3.3. Let B ∈ Z(n+r)×m, Rm ∈ {0, 1}m×N be ma-
trices generated in KeyGen and R ∈ {0, 1}m×N be a ma-
trix generated in PubEnc. Then, the joint probability distri-
bution (B, BRm, BR) is computationally indistinguishable
from uniform over Z(n+r)×m

q × Z(n+r)×N
q × Z(n+r)×N

q .

We need to estimate the noise growth by the evaluation
of SIMD homomorphic addition and multiplication. Similar
to [AP14], we employ the properties of subgaussian random
variables for a tight analysis. We collect the result of the
estimation in the following proposition.

Proposition 3.4. Let S ∈ Zr×(n+r) be a secret key matrix. Let
C1 ∈ Z(n+r)×N

q and C2 ∈ Z(n+r)×N
q be ciphertexts that encrypt

message vectors (m1,1, . . . ,m1,r) ∈ {0, 1}r and (m2,1, . . . ,m2,r) ∈
{0, 1}r with noise matrices E1 ∈ Zr×N and E2 ∈ Zr×N , re-
spectively. Let eT

i, j ∈ Z1×N be the j-th row vector of Ei

(for i = 1, 2 and j = 1, . . . , r). Let Cadd := C1 ⊕ C2 and
Cmult

R←−C1 ⊙ C2. Then, we have

SCadd = Eadd +


(m1,1 + m2,1) · sT

1
...

(m1,r + m2,r) · sT
r

 G ∈ Zr×N
q ,

SCmult = Emult +


(m1,1 · m2,1) · sT

1
...

(m1,r · m2,r) · sT
r

 G ∈ Zr×N
q ,

where Eadd := E1 + E2 and Emult is of the form E + [m1,1 ·
e2,1 ∥ · · · ∥ m1,r · e2,r]T . In particular, E has in the i-th row
independent subgaussian entries with parameter O(∥e1,i∥2).

Proof. We can easily see that the statement for Cadd holds.
For Cmult, we have

SCmult = SC1G−1(C2)

=

E1 +


m1,1 · sT

1
...

m1,r · sT
r

 G

 G−1(C2)

= E1G−1(C2) +


m1,1 · eT

2,1
...

m1,r · eT
2,r

 +


m1,1m2,1 · sT
1

...

m1,rm2,r · sT
r

 G.

If we let E := E1G−1(C2), the i-th row entries of E has
parameter O(∥e1,i∥2) from the subgaussian properties and
Lemma 2.2. □

Similar to the original GSW scheme, our SIMD scheme
also has the asymmetric noise growth property, and thereby
computing a polynomial length chain of homomorphic mul-
tiplications incurs the noise growth by a multiplicative poly-
nomial factor. We set the following corollary immediately

proven from Proposition 3.4 and the properties of subgaus-
sian random variables. In the following corollary, we in-
clude the fixed ciphertext G ∈ Z(n+r)×N of message vector
(1, . . . , 1) with noise zero. This makes noise in the output
ciphertext subgaussian and independent of noise in the in-
put ciphertexts.

Corollary 3.1. For i = 1, . . . , k, let Ci ∈ Z(n+r)×N be a
packed ciphertext with noise matrix Ei ∈ Zr×N . Let

C R←−
k⊙

i=1

Ci ⊙ G = C1 ⊙ (C2 ⊙ (· · · (Ck−1 ⊙ (Ck ⊙ G))) · · · ).

For i = 1, . . . , k and j = 1, . . . , r, let eT
i, j be the j-th row of Ei,

and eT
j := [eT

1, j ∥ eT
2, j ∥ · · · ∥ eT

k, j] ∈ Z1×kN . Then the noise
matrix of C has in the j-th row independent subgaussian
entries with parameter O(∥e j∥2).

Proof. The noise matrix of C is of the form
∑k

i=1 EiXi, where
Xi is the matrix used in the evaluation of each ⊙. By Propo-
sition 3.4, the elements of EiXi in the j-th row are inde-
pendent and subgaussian with parameter O(∥ei, j∥2). From
the Pythagorean additivity of subgaussian random variables,∑k

i=1 EiXi has in the j-th row independent subgaussian en-
tries with parameter O(∥e j∥2). □

Lemma 2.1, Proposition 3.4, and Corollary 3.1 give a
bound for noise in the ciphertext on which SIMD homo-
morphic operations are evaluated. We can estimate the ap-
propriate modulus q from the bound and Proposition 3.1.

3.2 Switching Plaintext Slots
We constructed a SIMD variant of [GSW13] that sup-

ports SIMD homomorphic addition and multiplication. The
above scheme, however, is still insufficient to bring out the
potential of our scheme.

SIMD homomorphic encryption can encrypt multiple mes-
sages: its ciphertext has multiple plaintext slots. Gentry et
al. [GHS12] showed that any arithmetic circuit can be effi-
ciently computed by the network with gates r-Add, r-Mult,
and r-Permute (discussed in Section 1.2). r-Add and r-Mult
have already been implemented in our scheme. We here
instantiate the plaintext-slot permutation procedure for r-
Permute by utilizing the key-switching technique [BV11b,
BGV12] similar to [BGH13] and a slightly non-trivial twist-
ing. A rough sketch to construct the plaintext-slot switching
procedure is given in Section 1.2. Our switching consists of
two algorithms, SwitchKeyGen and SlotSwitch.

• SwitchKeyGen(S, π): Given a secret key matrix S ∈
Zr×(n+r)

q for our scheme and permutation π, compute
gadgets to switch plaintext slots. Parse S = [Ir ∥
−S′], sample A′ U←−Zn×N

q and E(π), E(π−1) R←−χr×N , and
set

Wπ :=
[(

S′A′ + E(π)

A′

)
+

(
π(S)G

0

)]
q
∈ Z(n+r)×N

q ,

Wπ−1 :=
[(

S′A′ + E(π−1)

A′

)
+

(
π−1(S)G

0

)]
q

∈ Z(n+r)×N
q .

Output the switch key sskπ := (Wπ,Wπ−1 ).
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• SlotSwitchsskπ (C): Take as input a switch key sskπ
for permutation π and ciphertext C, output

Cπ
R←−Wπ ⊙ (C ⊙ (Wπ−1 ⊙ G)),

where G ∈ Z(n+r)×N is the fixed encryption of (1, . . . , 1)
with noise zero.

Since matrices π(S) and π−1(S) in key switching gadgets
are obtained from interchanging the rows of S, we can-
not directly apply the DLWE assumption to prove the se-
curity. The way of dealing with this problem is to assume
the scheme circularly secure.

One nice feature of our plaintext-slot switching is not to
suffer from the inconvenience of the security as in [BGH13]:
we do not have to use a larger modulus than the underlying
encryption scheme. Brakerski et al. [BGH13] made use of
a larger modulus Q = 2ℓq, to suppress the noise growth by
multiplying a ciphertext to a key switching gadget, so the
security of the [BGH13]’s plaintext-slot switching must be
related to Q. The larger modulus leads to a higher modulus-
to-noise ratio. To obtain the same security level as the un-
derlying [BGH13]’s SIMD scheme, it is required to select
a larger dimension. As opposed to this, our plaintext-slot
switching can use the same modulus in our scheme.

Correctness and the noise estimation are stated in the fol-
lowing.

Proposition 3.5. For any permutation π and secret key ma-
trix S, let sskπ

R←−SwitchKeyGen(S, π). For ciphertext C of
our scheme, let Cπ

R←−SlotSwitchsskπ (C). Then, we have

SCπ =


mπ(1) · s

T

1
...

mπ(r) · s
T

r

 G + Ê,

where Ê is the noise matrix. In particular, the i-th row
of Ê has independent subgaussian entries with parameter
O(∥[(e(π)

i )T ∥ (e(C)
π(i) )T ∥ (e(π−1)

π(i) )T ]∥2), where e(π)
i , e(C)

i , and

e(π−1)
i are the i-th rows of the noise matrices in Wπ, C, and

Wπ−1 , respectively.

Proof. We parse the secret key matrix as S = [Ir ∥ −S′],
where S′ ∈ Zr×n. Then it holds that

SCπ = SWπG−1(CG−1(Wπ−1 G−1(G)))

= (E(π) + π(S′)G)G−1(CG−1(Wπ−1 G−1(G)))

= ˆE(π) +

π(E(C)) +


mπ(1) · sT

π(1)
...

mπ(r) · sT
π(r)

 G

 G−1(Wπ−1 G−1(G))

= ˆE(π) +
ˆ

π(E(C)) +

π(E(π−1)) +


mπ(1) · sT

π−1(π(1))
...

mπ(r) · sT
π−1(π(r))

 G

 G−1(G)

= ˆE(π) +
ˆ

π(E(C)) + ˆπ(E(π−1)) +


mπ(1) · sT

1
...

mπ(r) · sT
r

 G,

where ˆE(π) = E(π)G−1(CG−1(Wπ−1 )),
ˆ

π(E(C)) = π(E(C))G−1(Wπ−1 ),
and ˆπ(E(π−1)) = π(E(π−1))G−1(G). If we set Ê := ˆE(π) +

ˆ
π(E(C)) + ˆπ(E(π−1)), the statement holds from the subgaus-
sian properties and Lemma 2.2. □

The following corollary states how much noise in a ci-
phertext is amplified by successive applications of SlotSwitch.
Similar to the proof of Corollary 3.1, this can immediately
be proven from Proposition 3.5.

Corollary 3.2. For i = 1, . . . , k, let πi be a permutation and
sski

R←−SlotSwitchsski (sk, πi). Let C ∈ Z(n+r)×N be a packed
ciphertext that encrypts a message m ∈ {0, 1}r and has a
noise matrix E(C) ∈ Zr×N , and let

Ĉ R←−SlotSwitchssk1 (SlotSwitchssk2 (. . . (SlotSwitchsskk (C)) . . .)
=Wπ1 ⊙ (. . . (Wπk ⊙ (C ⊙ (Wπ−1

k
⊙ (. . . (Wπ−1

1
⊙ G)) . . .).

Then Ĉ encrypts ⃝k
i=1πi(m) and has a noise matrix Ê ∈

Zr×N . In particular, the j ∈ [r]-th row of Ê has indepen-
dent subgaussian entries with parameter O(∥ê j∥2), where

êT
j := [(e(π1)

j )T ∥ (e(π2)
π1( j))

T ∥ · · · ∥ (e(C)
⃝k

i=1πi( j)
)T

∥ (e(π−1
k )

⃝k
i=1πi( j)

)T ∥ · · · ∥ (e(π−1
1 )
π1( j))

T ] ∈ Z1×(2k+1)N .
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