
Copyright c©2015 The Institute of Electronics,
Information and Communication Engineers

SCIS 2015 The 32nd Symposium on
Cryptography and Information Security

Kokura, Japan, Jan. 20 - 23, 2015
The Institute of Electronics,

Information and Communication Engineers

Threshold Two-Move Password Authenticated Key Exchange
Protocol

Tatsuya Kyogoku ∗ Minseon Lee ∗ Masayuki Abe †∗ Tatsuaki Okamoto †∗

Abstract: Distributed smooth projective hash functions (SPHF x) allow us to distribute the
computation of the hash value across n parties and can be used as building blocks in threshold and
multi-party protocols. In this paper we present a new threshold password authenticated key exchange
(threshold PAKE) protocol using SPHF x on Cramer-Shoup Ciphertexts. Our protocol is two-move
where a client communicates twice (send and receive) with each server, while the existing threshold
PAKE protocols are three-move.

Keywords: password authenticated key exchange, smooth projective hash functions, Pedersen-VSS

1 Introduction

In password-authenticated key exchange (PAKE) [1]
protocols, two parties (the client and the server) are
able to establish one common random value (a session
key), used to encrypt and authenticate messages be-
tween them, as long as the two parties share a com-
mon secret password. Ford and Kaliski [3] proposed
threshold password-authenticated key exchange (thresh-
old PAKE) in which the password of the client is stored
in a shared form among n authentication servers in or-
der to protect the password against adversaries who are
able to breach the authentication server. Their proto-
col is an n-out-of-n scheme, i.e., the password is shared
across n servers and all n servers must cooperate to
reconstruct the password. As protocols of threshold
PAKE that satisfy both t-out-of-n and provably secure
in the standard model, Raimondo and Gennaro [8] pre-
sented some protocols where at least t + 1 servers of
them must cooperate to learn the password. One of
them is called non-transparent: the client is aware of
how many servers are involved, and at the end of an
execution of the protocol the client produces n sepa-
rate session keys (the client shares one key with each
server).

Another important notion is smooth projective hash
functions (SPHF)s which have been used as a building
block for various cryptographic applications, in par-
ticular for PAKE. Cramer and Shoup [2] first intro-
duced the concept of SPHF to construct CCA-secure
public key encryption schemes. It was then used in
the construction of a PAKE scheme by Gennaro and
Lindell [4]. KOY scheme [6] is based on their work.
Kiefer and Manulis, in their recent paper [5], intro-
duced the notion of (distributed) extended smooth pro-
jective hash functions (SPHFx) that allows one to dis-

∗ Kyoto University
† NTT Secure Platform Labolrtories, NTT Corporation

tribute the computation of the hash value across n par-
ties for special languages called divergent parameter-
ized languages. Further they clarified the notion with a
concrete instantiation using Cramer-Shoup encryption
and proposed a two-server PAKE framework as appli-
cation of distributed SPHFx. While they showed the
“possibility” that distributed SPHFx can be used as a
building block in threshold PAKE schemes (n servers),
they only focused on two-server PAKE framework in
their paper.

Our contributions: In this paper, we present a new
threshold PAKE scheme using distributed SPHFx. Our
scheme is two-move, i.e., the client communicates twice
(send and receive) with each server, while the existing
threshold schemes [7, 8] are three-move. Our start-
ing point is the distributed Cramer-Shoup SPHFx of
[5]. For simplicity we call the single server version
of the distributed Cramer-Shoup SPHFx by the cen-
tralized Cramer-Shoup SPHF. We transform the cen-
tralized Cramer-Shoup SPHF of [5] into a t-out-of-n
threshold PAKE scheme. The basic idea of our con-
struction is to distribute the password across n servers
using a secret sharing scheme such as Pedersen’s one.
Then the servers cooperate to compute the messages
between the client and the servers. In this scheme, the
client basically run n copies of the centralized Cramer-
Shoup SPHF, one between the client and each server.
Security is proven by a reduction to the security of the
underlying centralized Cramer-Shoup SPHF, i.e., we
show that if there is an adversary breaks our threshold
scheme, then we can construct another adversary who
breaks an instance of the centralized Cramer-Shoup
SPHF.

Organization of the paper: This paper is organized
as follows. In Section 2, we recall the notions of dis-
tributed SPHFx and Threshold PAKE, and present

1



some useful definitions and notations. In Section 3, we
give a new threshold PAKE scheme using distributed
SPHFx. Finally we analyze the security of our scheme.

2 Preliminaries

In this section we introduce some technics that we
use in our scheme.

2.1 Language Representation

Languages are proposed in [9] while SPHF for lan-
guages of chipertexts [10] need some particular cases
only. Therefore, in this paper we focus only on as
needed. A language Laux is indexed by a parameter
aux, consisting of two parts(crs, aux’):the public parts
common reference string crs, and private part aux’.
More concretely crs contains the global parameters and
a public key of an encryption scheme while aux’ con-
tains an message that should be encrypted.
For a language Laux we assume there exists a func-
tion Γ : Set → Gk×n , and a family of functions
Θ : Set → G1×n for positive integers k and n. A
cyphertext C is in the language Laux if and only if
Θaux(C) is a linear combination of (the exponents in)
the rows of some matrix Γ.
(C ∈ Laux)⇔ (∃λ ∈ Z1×k

p such that Θaux(C) = λ� Γ)
We use notation� : a ∈ G, r ∈ Zp : a � r = r � a =
ar ∈ G
We furthermore require that a user, who knows witness
w of the membership C ∈ Laux, can efficiently compute
the above linear combination λ.
A smooth projective hash function for ciphertext lan-
guage Laux consists of the following four algorithms.

SPHF [10]

-KGenH(Laux)
generate a hashing key kh ∈R Z1×n

p for language
Laux.

-KGenP (kh, Laux, C)
derives the projection key kp = Γ� kh ∈ Gk×1

-Hash(kh, Laux, C)
outputs the hash value h = Θaux(C)� kh ∈ G.

-PHash(kp, Laux, C, w)
return the hash value h = λ� kp ∈ G, with λ =
Ω(w,C) for some Ω : 0, 1∗ → G1×k .

We illustrate variables on CS;

Γ =

(
g1 1 g2 h c
1 g1 1 1 d

)
∈ G2×5

λ = (r, rξ) ∈ Z1×2
p for Ω(r, C) = (r, rξ)

Θaux(C) = (u1, u
ξ
1, u2, e/g

m
1 , v) ∈ G1×5

kh = (η1, η2, θ, µ, ν)
R← Z5

p

2.2 SPHFx

We use an extended notion of smooth projective hash-
ing [5] that allows us to distribute the computation of
the hash value. SPHF x can use a set of ciphertexts
(C0,C1,...,Cx) with specific properties while SPHF can
use a single ciphertext. SPHF x computes two differ-
ent hash value. The hash value h0 for C0 can be either
computed with knowledge of the hash key kh0 or with
the witness w1, ..., wx that C1, ..., Cx ∈ Laux. The hash
value hx can be either computed with knowledge of
the hash key kh1, ..., khx or with the witness w0 that
C0 ∈ Laux.

Let (C0, C1, ..., Cx) ∈ Laux
If There exists (w0, w1, ..., wx) and functions h, g
h(aux’) = (aux′1, ..., aux

′
x)

Dec′π(C0) = Dec′π(g(C1, ..., Cx))
(Dec’ denotes modified decryption algorithm π denotes
secret key for the corresponding public key pk from
crs.) SPHF x consists of the following six algorithms.

SPHFx

-KGenH(Laux)
generates a hashing key khi ∈ Z1×n

p fori ∈ {0, ..., x}
and language Laux.

-KGenP (khi, Laux)
derives the projection key kpi = Γ � khi ∈ G1×k

for i ∈ {0, ..., x}.

-Hashx(kh0, Laux, C1, ..., Cx)
outputs the hash value hx = Θx

aux(C1, ..., Cx) �
kh0

-PHashx(kp0, Laux, C1, ..., Cx, w1, ..., wx)
returns hash value hx = Πx

i=1(λi � kp0)
where λi = Ω(wi, Ci).

-Hash0(kh1, ..., khx, Laux, C0)
outputs hash value
h0 = Πx

i=1(Θx
aux(C0)�khi) = Θx

aux(C0)�Σxi=1khi

-PHash0(kp1, ..., kpx, Laux, C0, w0)
return hash value h0 = Πx

i=1(λ0 � kpi)
where λ0 = Ω(w0, C0)

2.3 Cramer-Shoup SPHFx

We use Labeled Cramer-Shoup Encryption(CS) Scheme
throughout this paper . Thus we first recall CS Scheme
and in the next place define Cramer-Shoup SPHF x.

CS Scheme

-Setup (1k)
generates a group G of order p, with a generator
g

-KeyGen()

(g1, g2)
R← G2

dk =(x1, x2, y1, y2, z)
R← Z5

p

c = g1
x1g2

x2 , d = g1
y1g2

y2 , h = g1
z

ek = (g1, g2, c, d, h, hk).

2



-Enc(`, ek,M ; r)
messageM ∈ G
random scalar r = Zp
Collision-resistant hash function family H ∈ Z∗p
hk

R← H
ξ = hk(`, g1

r, g2
r, e)

ciphertext C = (`, g1
r, g2

r,M · hr, (cdξ)r)
= (`, u1, u2, e, v)

-Dec(`, dk, C)
ξ = hk(`, g1

r, g2
r, e)

If u1
x1+ξy1 · u2

x2+ξy2 = v computesM = e/uz1
else computes ⊥

CS SPHFx

-khi
R← KGenH(Laux) :

khi = (η1, η2, θ, µ, ν)
R← Z5

p

-kpi←KGenP (khi, Laux) :

kpi = Γ� khi

=

(
g1 1 g2 h c
1 g1 1 1 d

)
� (η1,i , η2,i , θi, µi, νi)

=

(
gη1,i1 gθi2 hµi cνi

gη2,i1 dνi

)
∈ G2×1

-hx←Hashx(kh0, Laux, C1, ..., Cx) :

hx = Θx
aux(C1, ..., Cx)� kh0

= (

x∏
i=1

u1,i,

x∏
i=1

uξi1,i,

x∏
i=1

u2,i,

x∏
i=1

ei/g
m
1 ,

x∏
i=1

vi)

� (η1,0 , η2,0 , θ0, µ0, ν0)

= (

x∏
i=1

u1,i)
η1,0(

x∏
i=1

uξi1,i)
η2,0(

x∏
i=1

u2,i)
θ0

(

x∏
i=1

ei/g
m
1 )µ0(

x∏
i=1

vi)
ν0 ∈ G

-hx←PHashx(kp0, Laux, C1, ..., Cx, r1, ..., rx) :
with Ω(ri, Ci) = (ri, riξi)

hx =

x∏
i=1

(λi � kp0)

=

x∏
i=1

(
(ri, riξi)

�
(
gη1,i1 gθi2 hµi cνi

gη2,i1 dνi

))
=

x∏
i=1

[(gη1,i1 gθi2 h
µicνi)ri(gη2,i1 dνi)riξi ]

∈ G

-h0←Hash0(kh1, ..., khx, Laux, C0) :

h0 =

x∏
i=1

(Θ0
aux(C0)� khi)

=

x∏
i=1

[(u1, u
ξ
1, u2, e/g

m
1 , v)� (η1,i , η2,i , θi, µi, νi)]

=

x∏
i=1

(uη1,i1 uξη2,i1 uθi2 (e/gm1 )µivνi) ∈ G

-h0←PHash0(kp1, ..., kpx, Laux, C0, r0) :

h0 =

x∏
i=1

(λ0 � kpi)

=

x∏
i=1

(
(r0, r0ξ0)�

(
gη1,i1 gθi2 hµi cνi

gη2,i1 dνi

))

=

x∏
i=1

[(gη1,i1 gθi2 h
µicνi)r0(gη2,i1 dνi)ri0xi0 ] ∈ G

2.4 Threshold Scheme

We use Pedersen’s Verifiable Secret Sharing(VSS)
protocol introduced in [11] as a central tool in our
solution. The dealer distributes a secret to n servers
such a way that each server can verify that it has re-
ceived correct share of the secret without interacting
with other servers. If qualified servers assemble above
threshold level they can find the secret. Else no infor-
mation about the secret can be obtained. Let math
be elements of Gq such that no one knows loggh. The
VSS commits himself to an s ∈ Zq by choosing t ∈ Zq
at random and computing E(s, t) = gsht. Such a com-
mitment can later be opened by revealing s and t. We
distribute n secrets simultaneously with one random
value.

Pedersen’s VSS

Setup(1k)

generate (G, q, g1, · · · , gn)
R← GenG(1k) and choose

h elements of Gq such that nobody knows logg1h, · · · , loggnh.

VSS
When commit messages mk(1 ≤ k ≤ n) ∈ Zq

1. Dealer chooses r
U← Zq.

2. Dealer chooses n polynomials Sk() of degree
at most t (satisfyingSk(0) = mk) and let
mk,i = Sk(i)(1 ≤ i ≤ n).

3. Dealer chooses one polynomials R() of de-
gree at most t at random and let ri = R(i).
E(m1, · · · ,mn, r)=g

m1
1 · · · gmn

n hr.
E(mk,i, ri) = g

m1,i

1 · · · gmn,i
n

4. Dealer sends gm1
1 · · · gmn

n hr and coefficients
of each polynomial to the servers.

3



5. Dealer sends Ei(mk,i, ri) secretly to Si.

6. Receivers check if c := gm1
1 · · · gmn

n hr is col-
lect.

2.5 Joint sharings

Pedersen-RVSS needs a trusted dealer who generates
a shared secret. To avoid the use of the trusted dealer,
each server pretend to be a dealer and runs a copy of
Pedersens protocol with a random secret. Each random
secret is shared among qualified servers and sum of the
secrets that we want to share. In this method the sum
is taken only over servers that were not disqualified as
dealers.
In [12] Joint-Pedersen-RVSS with basis g and h, which
generations the shared secret s. It is then followed by
a second phase in which each player performs a Feld-
man’s VSS with basis g with the same polynomial used
for Joint-Pedersen-RVSS. this second phase will allows
the servers to calculate gs secretly.
We modify this protocol so that it works with n secrets
and any combination of basis based on [8]. For sim-
plicity we restrict ourselves to the case of two secrets.
It should be clear how to extend it to any number of
secrets in the following description. Let g, h ∈ Gq be
given such that the commitment scheme.the dealer can
distribute x, x’ ∈ Zq as follows.

Joint-Pedersen-RVSS

1. Each server Si for {i = 1,· · · ,n}performs Pedersen-
VSS of random values zi, z

′
i as a dealer.

(a) Each server Si Chooses three random poly-
nomials
fi(z), f

′
i(z), f

′′
i (z), over Zq of degree t.

fi(z) = ai0 + ai1z+, · · · ,+aitzt
f ′i(z) = bi0 + bi1z+, · · · ,+bitzt
f ′′i (z) = ci0 + ci1z+, · · · ,+citzt
Let zi = ai0 = fi(0), z′i = bi0 = f ′i(0),
z′′i = ci0 = f ′′i (0) Si and Si broadcast Vik =
gaik1 gbik2 hcik mod p for k = 0,· · · ,t.
Si computes shares sij = fi(j), s

′
ij = f ′i(j),

s′′ij = f ′′i (j) mod q for j = 1, · · · , n and sends
sij , s

′
ij , s

′′
ij to server Sj .

(b) Each server Sj verifies the shares it received
from other servers. For each i = 1,...,n, Sj
checks

g
sij
1 g

s′ij
2 hs

′′
ij =

t∏
k=0

(Vik)j
k

(mod p) (1)

If the check fails for an index i, Sj broad-
casts a complaint against Si

(c) Each server Si that received a complaint
from server Sj broadcasts the values sij , s

′
ij ,

s′′ij that satisfy (1).

(d) Each server marks as disqualified any server
that either

i. received more than t complaints in Step1.(b)

ii. answered to a complaint in step1.(c) with
values that falsify (1)

2. Each server then builds the set of non-disqualified
servers QUAL.

3. The distributed secret values x, x’ are not explic-
itly computed by any party, but it equals

x =
∑

i∈QUAL
zi mod q,

x′ =
∑

i∈QUAL
z′i mod q.

Each server Si sets his share of the secret as

xi =
∑

j∈QUAL
sji mod q

x′i =
∑

j∈QUAL
s′ji mod q.

x′′i =
∑

j∈QUAL
s′′ji mod q.

We will use the following notation:

Joint-Pedersen-RVSS(g1, g2, h)

f,f ′,f ′′

−−−−−→
t,n

[zi, z
′
i, z
′′
i , TZTZ′ ](Vik, QUAL){x, x′}

TZ , TZ′ are transcripts of the n VSS’s executed by each
server.
TZ = {private to Si(i ∈ QUAL) : {aik}, {cik}, {sji, s′ji, s′′ji};
public : {Vik}}
TZ′ = {private to Si(i ∈ QUAL) : {bik}, {cik}, {sji, s′ji, s′′ji};
public : {Vik}}

Shared-Exp
Input: the transcripts TZ,Z′

1. Each server Si, i ∈ QUAL, broadcasts Eik =
g1
aikg2

bikhcik mod p for k ∈ [0, .., t]

2. Each server Si verifies the values broadcast by
the other servers in QUAL, for each i ∈ QUAL,
Sj checks

g
sij
1 g

s′ij
2

?
=

t∏
k=1

(Eik)j
k

mod p (2)

If the check fails for an index i, then Sjcomplains
against Si, by revealing in broadcast the values
sij , s

′
ij , s

′′
ij . These values satisfy(1) but do not

satisfy(2).

3. If Si receives at least one valid complaint, other
servers run the reconstruction phase of S′i VSS
and obtain the values aik, bik and Eik for k =
0,· · · ,t.

4



4. Now each server can compute

g1
xg2

x′
=

∏
i=QUAL

Ei0 mod p

We will use the following notation :

Shared− Exp[TZ , TZ′ ](g1, g2)→ (g1
xg2

x′
)

3 Our scheme

We propose a scheme that is t-out-of-n threshold ver-
sion of the Distributed Cramer-Shoup SPHFx. In this
scheme, we assume that the communication between
a client and servers is public while the communication
among servers are totally connected by a complete pri-
vate network. The servers cooperate with each other to
compute the replies of the jth server for the client in the
background (the client is unable to see the server’s con-
versation). We also assume that in the set up phase,
the password of the client has previously distributed
among the servers in a shared form. The output of the
scheme is n separate session keys; the client shares one
key with each server.

The main idea of our authentication scheme is to
run n copies of the centralized Cramer-Shoup SPHF,
one instance between client P0 and each server Sj . A
simple description of the scheme is as follows.

Client P0 first makes n messages by running n times
the first step of the centralized Cramer-Shoup SPHF,
and sends the n messages to the n servers, one (C0,j ,
kp0,j) for each server Sj .

The servers answer to the client with n independent
messages (one sent from each server). For each server
Sj , the servers execute Joint-Pedersen-RVSS once to
select random values η1,j , η2,j , θj , µj , νj , rj . And
using Shared-Exp two times and Joint-Pedersen-RVSS
once, they compute kpj = (g1

η1,jg2
θjhµjcνj , g1

η2,jdνj )
and Cj = (`j , g1

rj , g2
rj , hrjg1

pw, (cdξj )
rj

), respectively.
Then server Sj sends to client P0 its message (Cj , kSj ).

Lastly, using Shared-Exp once, n servers locally com-
pute n session keys, one key skj for each server Sj .

We describe the scheme in more detail in Section3.2,
3.3 and Section 3.4.

3.1 Communication model

We use the same communication model in[8]. The
communication between the client and the authentica-
tion servers, is carried on a basically insecure network.
One the other hand, servers S1, · · · , Sn are connected
by a complete network of private.

3.2 Set up

We perform set up phase in security that mean QUAL
= n.

1. The client P0 splits his password pw into n ran-
dom values.
pw = pw1+, · · · ,+pwn

2. The client hands out the values pwj to the servers
Sj(1 ≤ j ≤ n).

3. Each server performs the following.

Joint− Pedersen−RV SS(g1, h)

PW,X̃−−−−→
t,n

[pwi, x̃i, Tpw](Vpw){pw}

3.3 The scheme of the client’s side

Public information: G, p, g1, g2, g3, g4, g5, g6, h, c,
d, Hk, Laux, pk.

Input for client P0: the password pw ∈ Zp.

1. Client P0 generates nmessages by running n times
the first step of the centralized Cramer-Shoup
SPHF, i.e., the client performs the following steps
for each server Sj .

(a) kh0,j
R← KGenH(Laux) :

kh0,j = (η1,0,j , η2,0,j , θ0,j , µ0,j , ν0,j) ∈R Z1×5
p

(b) kp0,j ← KGenP (kh0,j , Laux) :

kp0,j = Γ� kh0,j

=

(
g1 1 g2 h c
1 g1 1 1 d

)
� (η1,0,j ,

η2,0,j , θ0,j , µ0,j , ν0,j)

=

(
g1
η1,0,jg2

θ0,jhµ0,jcν0,j

g1
η2,0,jdν0,j

)
∈ G2×1

(c) `0,j = (P0, Sj)

(d) C0,j ← EncCSpk (`0,j , pw; r0,j) :

r0,j
R← Zp

u1,0,j = g1
r0,j , u2,0,j = g2

r0,j , e0,j = g1
pwhr0,j

ξ0,j = Hk(`0,j , u1,0,j , u2,0,j , e0,j)

v0,j = (cdξ0,j )r0,j

C0,j = (`0,j , u1,0,j , u2,0,j , e0,j , v0,j) ∈ G1×5

The client sends n messages to the servers, one
(C0,j , kp0,j) for each server Sj .

2. Each server Sj runs the next step of the central-
ized Cramer-Shoup SPHF and generates a mes-
sage (Cj , kpj) sent to client P0. Each server Sj
also computes corresponding session key sk′j . The
client receives the following message from every
server Sj .

(Cj = (`j , u1,j , u2,j , ej , vj) ∈ G1×5,

kpj =

(
g1
η1,jg2

θjhµjcνj

g1
η2,jdνj

)
∈ G2×1)

3. For each server Sj , client P0 calculates kxj and
h0j as follows and computes session key skj .

5



(a) kxj ← Hashx(kh0,j , Laux, Cj) :

ξj = Hk(`j , u1,j , u2,j , ej)

hxj = Θx
aux(Cj)� kh0,j

= ((u1,j), ((u1,j)
ξj ), (u2,j), (ej/g1

pw), (vj))

� (η1,0,j , η2,0,j , θ0,j , µ0,j , ν0,j)

= (u1,j)
η1,0,j (u1,j)

ξjη2,0,j (u2,j)
θ0,j (ej/g1

pw)µ0,j

(vj)
ν0,j ∈ G

(b) h0j ← PHash0(kpj , Laux, C0,j , r0,j) with λ0j =
(r0,j , r0,jξ0,j):

h0j = (λ0j � kpj)

= (r0,j , r0,jξ0,j)�
(
g1
η1,jg2

θjhµjcνj

g1
η2,jdνj

)
= (g1

η1,jg2
θjhµjcνj )r0,j (g1

η2,jdνj )r0,jξ0,j

= (u1,0,j)
η1,j (u2,0,j)

θj (h)µjr0,j

(u1,0,j)
η2,jξ0,j (v0,j)

νj ∈ G

(c) Client P0 computes its session key skj for
each server Sj :

skj = hxjh0j

3.4 The scheme of the servers’ side

Public information: G, p, g1, g2, g3, g4, g5, g6, h, c,
d, Hk, Laux, pk.

Input for servers Sj: TPW , the output of the simu-
lated Joint-Pedesen-RVSS for the password pw.

1. Client P0 runs n times the first step of the central-
ized Cramer-Shoup SPHF and generates n mes-
sages, one for each server Sj . Each server Sj re-
ceives the following message (C0,j , kp0,j) from the
client.

(C0,j = (`0,j , u1,0,j , u2,0,j , e0,j , ν0,j) ∈ G1×5,

kp0,j =

(
g1
η1,0,jg2

θ0,jhµ0,jcν0,j

g1
η2,0,jdν0,j

)
∈ G2×1)

2. Each server Sj performs the following steps and
sends to client P0 its output, i.e., a message (Cj , kp,j)
(Client P0 receives nmessages from the n servers).

(a) khj
R← KGenH(Laux) :

Joint− Pedersen−RV SS(g1, g2, g3, g4, g5,

g6, h)
H1,j ,H2,j ,Θj ,Mj ,Nj ,Rj ,X̃−−−−−−−−−−−−−−−−−→

t,n
[η1,j,i, η2,j,i, θj,i,

µj,i, νj,i, rj,i, x̃j,i, TH1,j
, TH2,j

, TΘj
, TMj

, TNj
,

TRj
](VH1,j,k

, VH2,j,k
, VΘj,k

, VMj,k
, VNj,k

, VRj,k
)

{η1,j , η2,j , θj , µj , νj , rj}

khj = (η1,j , η2,j , θj , µj , νj) ∈R Z1×5
p

(b) kpj ← KGenP (khj , Laux) :

Shared− Exp[TH1,j
, TΘj

, TMj
, TNj

](g1, g2, h,

c)→ (kpj,0 = g1
η1,jg2

θjhµjcνj )

Shared− Exp[TH2,j
, TNj

](g1, d)→ (kpj,1 =

g1
η2,jdνj )

kpj =

(
kpj,0
kpj,1

)
=

(
g1
η1,jg2

θjhµjcνj

g1
η2,jdνj

)
∈ G2×1

(c) `j = (Sj , P0)

(d) Cj ← EncCSpk (`j , pw; rj) :

ξj = Hk(`j , u1,j , u2,j , ej)

Shared− Exp[TRj
](g1)→ (u1,j = g1

rj )

Shared− Exp[TRj
](g2)→ (u2,j = g2

rj )

Shared− Exp[TPW , TRj
](g1, h)→ (ej =

g1
pwhrj )

Shared− Exp[TRj
](cdξj )→ (vj = (cdξj )rj )

Cj = (`j , u1,j , u2,j , ej , vj) ∈ G1×5

(e) Server Sj sends its message (Cj , kpj) to Client
P0. The client computes corresponding ses-
sion key skj .

3. To compute session key sk′j , Server Sj calculates
k′xj and h′0j as follows:

(a) h′xj ← PHashx(kp0,j , Laux, Cj , rj) with λj =
(rj , rjξj) :

Shared− Exp[TRj
](g1

η1,0,jg2
θ0,jhµ0,jcν0,j ,

(g1
η2,0,jdν0,j )ξj )→ (h′xj = (g1

η1,0,jg2
θ0,jhµ0,j

cν0,j )rj (g1
η2,0,jdν0,j )ξjrj )

h′xj = (g1
η1,0,jg2

θ0,jhµ0,jcν0,j )rj (g1
η2,0,jdν0,j )ξjrj )

= (u1,j)
η1,0,j (u2,j)

θ0,j (h)µ0,jrj (u1,j)
η2,0,jξj

(vj)
ν0,j ∈ G

(b) h′0j ← Hash0(khj , Laux, C0,j) :

Shared− Exp[TH1,j , TH2,j , TΘj , TMj , TNj ]

(u1,0,j , u1,0,j
ξ0,j , u2,0,j , e0,j/g1

pw, v0,j)→
(h′0j = (u1,0,j)

η1,j (u1,0,j)
ξ0,jη2,j (u2,0,j)

θj

(e0,j/g1
pw)µj (v0,j)

νj ) ∈ G

(c) Server Sj locally computes its own session
key:

sk′j = h′xjh
′
0j

6



3.5 Correctness

The correctness of the scheme can be easily verified
by checking if client P0 and server Sj end with the same
key, i.e., skj = sk′j .

skj = hxjh0j

= (u1,j)
η1,0,j (u1,j)

ξjη2,0,j (u2,j)
θ0,j (ej/g1

pw)µ0,j (vj)
ν0,j

(u1,0,j)
η1,j (u2,0,j)

θj (h)µjr0,j (u1,0,j)
η2,jξ0,j (v0,j)

νj

= (u1,j)
η1,0,j (u2,j)

θ0,j (ej/g1
pw)µ0,j (u1,j)

ξjη2,0,j (vj)
ν0,j

(u1,0,j)
η1,j (u1,0,j)

η2,jξ0,j (u2,0,j)
θj (h)µjr0,j (v0,j)

νj

= (u1,j)
η1,0,j (u2,j)

θ0,j (hrj )µ0,j (u1,j)
ξjη2,0,j (vj)

ν0,j

(u1,0,j)
η1,j (u1,0,j)

η2,jξ0,j (u2,0,j)
θj (h)µjr0,j (v0,j)

νj

sk′j = h′xjh
′
0j

= (u1,j)
η1,0,j (u2,j)

θ0,j (h)µ0,jrj (u1,j)
η2,0,jξj (vj)

ν0,j

(u1,0,j)
η1,j (u1,0,j)

ξ0,jη2,j (u2,0,j)
θj (e0,j/g1

pw)µj (v0,j)
νj

= (u1,j)
η1,0,j (u2,j)

θ0,j (h)µ0,jrj (u1,j)
η2,0,jξj (vj)

ν0,j

(u1,0,j)
η1,j (u1,0,j)

ξ0,jη2,j (u2,0,j)
θj (hr0,j )µj (v0,j)

νj

...skj = sk′j

4 Proof of security

Theorem 1. If SPHF is secure and Cramer-Shoup en-
cryption scheme is CCA-secure, then our scheme is a
secure threshold PAKE scheme.

Proof. In the distributed case we modify somewhat an
adversary’s power. First of all, the adversary does not
have total control of the internal network of the servers.
We assume that the servers have some authentication
mechanism already in place in order to create secure
channels between them. Moreover, we give the adver-
sary the power to corrupt the servers. This will allow
her to see their internal state and totally gain control
of the server. We bound the number of servers that the
adversary can corrupt by t .We assume the adversary
to be static, i.e., the set of corrupted servers S1, . . . St
is decided in advance.

We prove security by showing a reduction to the se-
curity of the underlying centralized scheme, i.e., we
show that if there is an adversary that is able to break
our threshold PAKE, then we can build another adver-
sary that breaks an instance of the centralized scheme.
Let A be an adversary that tries to break the central-
ized version of the Cramer-Shoup SPHFx. Adversary
A invokes adversary Athresh, which we assume is able
to break the threshold PAKE version of the Cramer-
Shoup SPHF. This execution is run in a “virtual world”
in which all the exchanged messages are simulated.

Let us recall what it means to break a threshold
PAKE protocol from [8]. Adversary Athresh is allowed
to invoke the commands Execute, Send, Reveal and
Test. At the end for one of the executions in which
she did not ask for Reveal query for the secret key, if
adversary Athresh asks a query Test, then the following
happens. A coin b is flipped. If it lands b = 0, then

the session key sk is returned to adversary Athresh, If
it lands b = 1, then a random session key is returned.
Adversary Athresh wins if she recognizes the right key
with probability substantially better than 1/2.

The centralized adversary A behaves as a simulator
which creates a virtual distribute world for Athresh.
The centralized adversary A installs a fake password.
For each execution of the distributed scheme, the cen-
tralized adversary A requests n sessions of the Cramer-
Shoup SPHF protocol she is trying to break. She uses
these n sessions to “embed” n sessions in the distributed
protocol, one for each server.

(1) Execute command: When Athresh invokes an
Execute command, Adversary A invokes n Execute in
the centralized world. This gives n transcripts (msgj1 =
(C0,j , kp0,j),msgj2 = (Cj , kpj)). The simulator have
to create a view in which the ith component match
msgj1 ,msgj2 . For msgj1 , this is not a problem since
the simulator controls the client. But formsgj2 we need
to show that the transcript of the distributed scheme
can be manipulated to hit this specific value. Let us
see the details (with the steps enumeration related to
Section 3.4), adversary A:

1: simulates the first n messages of the client using
the messages msgj,1

2a: executes in the virtual distributed world the in-
stances of Joint-Pedersen-RVSS to choose at ran-
dom η1,j , η2,j , θj , µj , νj .

2b: simulates the executions of Shared-Exp in order
to “hit” the right message kpj from the transcript
msgj,2

2c: follows the real scheme.

2d: simulates the executions of Shared-Exp in order
to “hit” the right message Cj from the transcript
msgj,2

2e: follows the real scheme.

3a: executes normal Shared-Exp for value h′xj

3b: executes normal Shared-Exp for value h′0j

3c: computes the faked secret key sk′j

(2) Send command: Let us go into the details for
each type of message that adversary Athresh can send:

1st msg (P0 → Sj): If Athresh sends a message (C0,j ,
kp0,j) to server Sj , then A forwards the request
to the real centralized server, and gets a reply
(Cj , kpj). This reply will be embedded in the
virtual distributed world “hitting” these values
as seen in the previous steps.

2st msg (Sj → P0): If Athresh sends a message (Cj ,
kpj) to the client, then A does not reply anything,
but she forwards the message to the real central-
ized server.

7



(3) Reveal command: If adversary Athresh asks a
Reveal query on any server, adversary A will ask a
Reveal query on the corresponding centralized session
and forward the answer to Athresh.

(4) Test command: When adversary A asks her Test
query in the centralized case and gets a string which is
passed on toAthresh. ThenA answers whateverAthresh
answers (i.e., true key or random key).

The advantage of A is exactly the same as the advan-
tage of Athresh. Indeed the simulated view of Athresh is
exactly the same as the view of a real execution of the
scheme (this is because the simulation of Shared-Exp
is perfect [8]).

References

[1] S. Bellovin, M. Merritt. Encrypted Key Exchange:
Password-Based Protocols Secure against Dictio-
nary Attacks. IEEE Symposium on Security and
Privacy, 1992.

[2] R. Cramer and V.Shoup. Universal Hash Proofs
and a Paradigm for Adaptive Chosen Ciphertext
Secure Public-Key Encryption. In Eurocrypt 2002,
volume 2332 of Lecture Notes in Computer Sci-
ence, pages 45-64. Springer-Verlag, 2002.

[3] W. Ford, B. Kaliski. Server-assisted generation of
a strong secret from a password. Proceedings of the
5th IEEE International Workshop on Enterprise
Security, 2000.

[4] R. Gennaro, Y. Lindell. A Framework for
Password-Based Authenticated Key Exchange. In
EUROCRYPT 2003, volume 2656 of Lecture Notes
in Computer Science, pages 524-543. Springer-
Verlag, 2003.

[5] F. Kiefer, M. Manulis. Distributed Smooth Pro-
jective Hashing and Its Application to Two-Server
Password Authenticated Key Exchange. In ACNS
2014, volume 8479 of Lecture Notes in Computer
Science, pages 199-216. Springer-Verlag, 2014.

[6] J. Katz, R. Ostrovsky, M. Yung. Efficient
Password-Authenticated Key Exchange Using
Human-Memorable Passwords. In EUROCRYPT
2001, volume 2045 of Lecture Notes in Computer
Science, pages 475-494. Springer-Verlag, 2001.

[7] P. MacKenzie, T. Shrimpton, and M. Jakobsson.
Threshold password-authenticated key exchange.
In Eurocrypt 2002, volume 2442 of Lecture Notes
in Computer Science, pages 385-400. Springer-
Verlag, 2002.

[8] M. D. Raimondo, R. Gennaro. Provably secure
threshold password-authenticated key exchange.
In EUROCRYPT 2003, volume 2656 of Lec-
ture Notes in Computer Science, pages 507-523.
Springer-Verlag, 2003.

[9] Fabrice Ben Hamouda, Olivier Blazy, Ce-
line Chevalier, David Pointcheval, and Damien
Vergnaud. Efficient uc-secure authenticated key-
exchange for algebraic languages.In Kaoru Kuro-
sawa and Goichiro Hanaoka, editors, PKC 2013:
16th International Conference on Practice and
Theory in Public-Key Cryptography, volume 7778
of Lecture Notes in Computer Science, pages 272
291. Springer, 2013.

[10] F.Benhamouda,O.Blazy,C.Chevalier,D.Pointcheval,
andD.Vergnaud.NewSmoothProjectiveHashFunctions
and One-Round Authenticated Key Exchange.
Cryptology ePrint Archive, Report 2013/034,
2013. http:// eprint.iacr.org/. 1, 2, 3, 4, 5, 15

[11] T. Pedersen, Non-interactive and information-
theoretic secure verifiable secret sharing. In
CRYPTO ’91, Springer LNCS 576,pp.129-
140,1991.

[12] R. Gennaro, S. Jarecki, H. Krawczyk, T. Ra-
bin, The (in)security of distributed key genera-
tion in dlog-based cryptosystems, in: Advances
in Cryptology-Proceedings of EUROCRYPT ’99,
in: Lecture Notes in Comput. Sci., vol. 1592,
Springer-Verlag, 1999, pp.295-310.

8


