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1 Introduction

How to ensure the security of a scheme is a very
important problem in cryptography. To prove that a
scheme is secure, there are some models. (e.g., the
random oracle model, the standard model, the generic
group model and so on.) In the random oracle model
[BR93], we use an ideal hash function, called a random
oracle, in a proof. With the random oracle model, we
can achieve a practical security level if we choose ap-
propriate hash functions. However, because of using
imaginary hash functions, the proof with the random
oracle model does not guarantee its security completely
in the real world.

Recently, researchers pay attention to program ob-
fuscation. Program obfuscation is that we encrypt a
program instead of a message with preserving its func-
tionality. One of these program obfuscations is the in-
distinguishability obfuscator (iO)[GGH13]. iO makes
poly-time algorithms unintelligible for two obfuscated
programs. By using the iO, some cryptosystems which
are proved secure in the random oracle model, can be
proved secure in the standard model [HSW14]. How-
ever, in [HSW14], the authors proved that their full
domain hash signature scheme (FDH) is secure just
with loose reduction to the RSA assumption using iO.
In this paper, we realize a new signature scheme with
tight reduction to the RSA assumption.

In order to consider this problem in the standard
model, we used an analogy of a probabilistic signature
scheme (PSS) [BR96], which was proposed to make re-
duction tight in a security proof of a full domain hash
signature scheme in the random oracle model. Though
the signing algorithm usually outputs only a signature,
it outputs a signature and a random value in our ran-
domized full domain hash signature. In addition, we
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construct hash functions for this change.

1.1 Background

1.1.1 Random Oracle Model and Standard
Model

In the random oracle model [BR93], we use an ideal
random hash function. It usually takes a plaintext as
an input and outputs a truly random value. Assuming
the existence of random oracles, we can prove security
more easily, because in the security proof game, a sign-
ing oracle can choose arbitrarily a random number as
a signature and calculate the e-th power of the random
number as an output of a random oracle. Let e be a
random integer used as a verification key in RSA FDH
signature scheme. However, a random oracle does not
exist, so if a scheme is proved in the random oracle
model, it does not means that the scheme is proved in
the real-world conditions.
a random oracle was introduced in [BR93] in 1993.

In 1994, the first scheme which is IND-CCA2 secure in
the random oracle model was proposed [BR94]. (The
proof in that paper had mistakes and was modified in
[FEPS01].) The proof of Full Domain Hash Signature
is introduced in [BR96].
In contrast, there is the standard model. In the stan-

dard model, a cryptographic system consists of only
actual primitives. Since if signature scheme is proved
in the standard model, it means that this system is se-
cure in real-world conditions, a proof in the standard
model is desirable. For example, Cramer and Shoup
public key encryption system [CS98] is a famous prac-
tical scheme proved in the standard model.

1.1.2 Indistinguishability Obfuscation

In order to prove in the standard model, we use in-
distinguishability obfuscation(iO). iO makes two pro-
grams indistinguishable with preserving their function-
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ality. iO was introduced in [GGH13]. Many papers
related with iO are published, for example [HSW14],
[SW14], [GGHR14] and so on.

1.1.3 Related Works

In [SW14], Sahai and Waters have shown new con-
structions of some cryptographic schemes that had been
proved in the random oracle model. Proposed schemes
have been proved in the standard model by employing
iO in [SW14]. However, they proved security for only
selective condition.

Hohenberger, Sahai and Waters have proposed new
constructions of FDH signature and BLS signature in
[HSW14]. They are the selectively secure one and the
adaptively secure one. The security of their FDH signa-
ture is proved under the RSA assumption in the stan-
dard model.

Ranchen and Waters have shown the construction of
more practical signature scheme using iO and proved
it adaptively secure in the standard model in [RW14].

1.2 Current Contribution

In this paper, we propose a new signature scheme
using the indistinguishability obfuscator. Our goal is
that we build a signature scheme that is more tightly re-
ducible to the RSA assumption. A key trick to achieve
this property is that we adopt a probabilistic construc-
tion in a signing algorithm with a (punctured) pseu-
dorandom function, instead of deterministic one in the
previous scheme. Since a signing oracle in the security
proof can choose randomness for punctured points, this
scheme is optimally reducible to the RSA assumption.

Reduction efficiency is the difference of difficulty be-
tween problems and also between a problem and a cryp-
tographic scheme. The example of these schemes used
herein is a signature scheme. Tight reduction enables a
signature scheme to be secure. That means a signature
scheme with tight reduction using short parameters is
as secure as that with loose reduction using long param-
eters. If our tight scheme have a parameter of which
length is 1, previous scheme ([HSW14]) needs to have
a parameter of which length is θ(Q) in order to have
equivalent security to that of our scheme.

2 Preliminaries

We introduce some definitions, an indistinguishabil-
ity obfuscator, a full domain hash signature and a pseu-
dorandom function, which we will make use of.

2.1 Indistinguishability Obfuscator

We first define an indistinguishability obfuscator from
[GGH13]. The intuition of their first property is that
even if circuits are obfuscated, same inputs necessarily
generate same output. The second property is that a
discriminator D cannot distinguish an obfuscated pro-
gram C1 with the other C2. The detail is below.

Definition 2.1. Indistinguishability Obfuscator
(iO)

A uniform probabilistic polynomial time turing ma-
chine (PPT) iO is called an indistinguishability obfus-
cator for a circuit class {Cλ} if it satisfies the following:

• For all security parameters λ ∈ N, for all C ∈ Cλ
and for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

• For any (not necessarily uniform) PPT adver-
saries Samp and D, if the size of C0 equals to
the size of the other program (C1), there exists a
negligible function α such that following holds: if
Pr[∀x,C0(x) = C1(x) : (C0, C1, τ)← Samp(1λ)] >
1− α(λ), then we have:

|Pr[D(τ, iO(λ,C0)) = 1 : (C0, C1, τ)← Samp(1λ)]−
Pr[D(τ, iO(λ,C1)) = 1 : (C0, C1, τ)← Samp(1λ)]| ≤ α(λ)

2.2 the RSA Assumption

We should recall the standard version of the RSA
assumption in [RSA78][MNO11].

Definition 2.2. the RSA Assumption Let GenRSA
is an algorithm which receives 1k as a security parame-
ter, outputs (n, p, q, e) where n = pq and e is a random
integer such that e < ϕ(n) and gcd(e, ϕ(n)) = 1. RSA
problem is that when an adversary takes (n, e, y) such

that y
U←− Z∗

n as inputs, it outputs x ∈ Z∗
n such that

x ≡ y
1
e (mod n). The advantage of the PPT adver-

sary, A for RSA problem is:

AdvRSA
A (k) : = Pr[xe ≡ y (mod n)|

(n, p, q, e)
R←− GenRSA(1k); y

U←− Z∗
n;

x
R←− A(n, e, y)]

For all probabilistic polynomial time algorithms A, if
AdvRSA

A (k) is negligible, namely if the following condi-
tion is true, RSA assumption holds.

AdvRSA
A (k) < ϵ(k)

2.3 Randomized Full Domain Hash (FDH) Sig-
nature

2.3.1 Syntax

Definition 2.3. Randomized Full Domain Hash
(FDH) Signature This scheme consists of three algo-
rithms,{Gen, Sign, Verify}. Their definitions are be-
low.

• GenFDH(1λ): It runs RSA(1k) to obtain (N, e, d)
and outputs (vk, sk) where vk = (N, e) and
sk = (N, d).

• SignFDH(sk, m): It randomly selects r and re-
turns a signature (σ, r) where σ = H(m, r)d mod
N .

• VerifyFDH(vk, m, (σ, r)): It checks σe ≡ H(m, r)
(mod N) and outputs 1 if this condition satisfies,
otherwise 0.
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2.3.2 Correctness

If a sign is created by SignFDH, the verification al-
gorithm outputs 1 with probability 1.

σe = (H(m, r)d)e

= H(m, r) mod N (∵ ed ≡ 1 mod ϕ(N))

Pr [σe = H(m, r) mod N |(σ, r) R←− SignFDH(sk,m)

,sk ← GenFDH] = 1

2.4 EUF-CMA Secure

When a signature scheme is existentially unforgeable
against an adaptively chosen message attack (EUF-
CMA), the game that before an adversary sends queries
to a challenger, he receives a verification key is consid-
ered. We show the game below.

• Setup: A challenger receives a security param-
eter (1k) and generate a verification key and a
signing key by using a Gen algorithm in a signa-
ture scheme. He sends a verification key to an
adversary.

• Query Phase: An adversary adaptively sends a
message (mi) to a signing oracle and receives the
signature (σi, ri) of the message at most qs(1 ≤
i ≤ qs) times.

• Challenge Phase: An adversary guesses a pair
of a message (m∗) and a signature (σ∗, r∗). If
m∗ /∈ mi(1 ≤ i ≤ qs) and a verification algo-
rithm that receives m∗ and (σ∗, r∗) outputs 1, an
adversary wins.

Let ExpEUF−CMA
Σ,A (k) be the above game. The ad-

vantage of an adversary A is a probability that A wins
ExpEUF−CMA

Σ,A (k). Namely,

AdvEUF−CMA
Σ,A (k) := Pr[ExpEUF−CMA

Σ,A (k)→ 1]

If the advantage of an adversary satisfies following def-
inition, a signature scheme is EUF-CMA secure.

Definition 2.4. EUF-CMA Let ϵ(k) be a negligible
value. A digital signature scheme Σ is EUF-CMA se-
cure, if it satisfies

AdvEUF−CMA
Σ,A < ϵ(k)

for all probabilistic polynomial time adversaries A.

2.5 Pseudorandom Function (PRF) and punc-
tured PRF

We consider a pseudorandom function, which is com-
putable in polynomial time and deterministic. Its com-
putational indistinguishability is that all probabilistic
polynomial time algorithms cannot distinguish the black-
box access to truly random functions from that to pseu-
dorandom functions This primitive was firstly intro-
duced in [GGM84]. We focus on a punctured pseudo-
random function shown in [HSW14] and introduce it.
There are similar definitions in [KPTZ13] and [BW13].

Definition 2.5. Punctured Pseudorandom Func-
tion A puncturable family of PRFs F mapping is given
by a triple of Turing Machines KeyF , PunctureF and
EvalF and a pair of computable functions n(·) and m(·)
satisfying the following conditions:

• [Functionality preserved under puncturing]
For every PPT adversary A such that A(1λ) out-
puts a polynomial-size set S ⊆ {0, 1}n(λ), then
for all x ∈ {0, 1}n(λ) where x ̸∈ S, we have that:

Pr[EvalF (K,x) = EvalF (KS , x)

|K ← KeyF (1
λ),KS = PunctureF (K,S)] = 1

• [Pseudorandom at punctured points] For
every PPT adversary (A1, A2) such that A1(1

λ)
outputs a polynomial-size set S ⊆ {0, 1}n(λ) and
state τ , consider an experiment where K ← KeyF (1

λ)
and KS = PunctureF (K,S). Then we have

|Pr[A2(τ,KS , S,EvalF (K,S)) = 1]−
Pr[A2(τ,KS , S, Um(λ)·|S|) = 1]| = negl(λ)

where EvalF (K,S) denotes the concatenation of
EvalF (K,x1),...,EvalF (K,xk) where S = {x1, ..., xk} is
the enumeration of the elements of S in lexicographic
order, negl(·) is a negligible function, and Uℓ denotes
the uniform distribution over l bits.

2.6 Chernoff Bound

Theorem 2.1. Chernoff Bound Let X1, ..., Xn be
independent variables such that Xi ∈ {0, 1} (1 ≤ i ≤
n). Let p ≤ 1

2 . For all i, let Pr[Xi = 1] = p. There
exists:

∀δ(0 ≤ δ ≤ p(1− p)),Pr[|Σ
n
i=1Xi

n
− p| ≤ δ]

< 2 · exp(− δ2

2p(1− p)
· n)

3 Fully Secure Signature Scheme

We introduce our efficient Randomized Full Domain
Hash Signature scheme with adaptively secure proof.
We show how to construct it in the standard model
and how to prove that our scheme is secure.

3.1 Syntax

The syntax consists of three PPT algorithm, [Setup,
Sign, Verify]. Each of them satisfies following settings:

• Setup(1λ) : The setup algorithm computes N =
pq where p and q is prime ϕ(N) = (p− 1)(q − 1)
and chooses prime e where |e| = O(λ) and d such
that d × e = 1 (mod ϕ(N)). It creates an ob-
fuscation of the program Full Domain Hash in
Figure 1. The program acts as a random oracle
type hash function. We refer to the program as

H(m, r
(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , s

(0), s(1))→ {0, 1}w.
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The setup algorithm sets H, N and e as a verifi-
cation key, vk, and d and the parameters in Full
Domain Hash in Figure 1 as a signing key, sk.

• Sign(sk, m ∈ M) : This algorithm chooses ran-

dom integers, (r
(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , s

(0), s(1)) ∈
ZN and computes

σ = H(m, r
(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , s

(0), s(1))d mod

N . It outputs (σ, r
(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , s

(0), s(1)).

• Verify(vk, m, r
(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , s

(0), s(1),
σ) : This checks

σe = H(m, r
(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , s

(0), s(1)) mod
N . If the condition is true, outputs 1, otherwise
0.

We use two hash functions which have following con-
struction. Note that when we use them, they are con-
tained in an indistinguishability obfuscator.

After this, we omit an expression of security param-
eter, λ.� �

Full Domain Hash

Constants: Collision resistance hash functions
hi : {0, 1}∗ → {0, 1}ℓ (i = 1, ..., ℓ), PRF F key
K, PRF F0 keys K1,1, ...,Kℓ,ℓ and random values

v1,..., vℓ
U←− Z∗

N .

Inputs: m ∈M, r
(0)
1,1,...,r

(0)
ℓ,ℓ , r

(1)
1,1,...,r

(1)
ℓ,ℓ ∈ ZN and

s(0), s(1) ∈ ZN .

1. Let F0(Ki,k; ·) : ZN → {0, 1} and F (K; ·) :

{0, 1}ℓ2 → {0, 1}n, where n = tℓ, F0 and F
be pseudorandom functions.

2.

b
(0)
i = hi(m)⊕ (F0(Ki,1; r

(0)
i,1 ), ..., F0(Ki,ℓ; r

(0)
i,ℓ ))

(1 ≤ i ≤ ℓ)

3. (c
(0)
1 , ..., c

(0)
ℓ ) = F (K; (b

(0)
1 , ..., b

(0)
ℓ ))

4. Repeat 2. and 3. for r
(1)
i,k and compute

(c
(1)
1 , ..., c

(1)
ℓ ) (1 ≤ i, k ≤ ℓ).

5. Compute ai = s(0) × c
(0)
i + s(1) × c

(1)
i (1 ≤

i ≤ ℓ).

6. Output va1
1 × va2

2 × ...× vaℓ

ℓ mod N� �
Figure 1: Full Domain Hash

� �
Full Domain Hash*

Constants: Collision resistance hash functions
hi : {0, 1}∗ → {0, 1}ℓ (i = 1, ..., ℓ), punc-
tured PRF F key KS , punctured PRF F0 keys

K1,1,S1,1 , ...,Kℓ,ℓ,Sℓ,ℓ
, random values v1, ..., vℓ

U←−
Z∗
N , R

(0)
1 , ..., R

(0)
q , R

(1)
1 , ..., R

(1)
q

U←− {0, 1}ℓ2 , S =

{R(0)
1 , ..., R

(0)
q , R

(1)
1 , ..., R

(1)
q }, Q

(0)
i,k,j,β , Q

(1)
i,k,j,β

U←−
ZN , Si,k = {Q(0)

i,k,j,0, Q
(0)
i,k,j,1, Q

(1)
i,k,j,0, Q

(1)
i,k,j,1 | 1 ≤

j ≤ q}, where F (K;R
(γ)
j ) = F (KS ;R

(γ)
j )

(γ ∈ {0, 1}) and F0(Ki,k;Q
(γ)
i,k,j,β) =

F0(Ki,k,Si,k
;Q

(γ)
i,k,j,β) (j = 1, ..., q) (γ, β ∈ {0, 1}).

Inputs: m ∈M, r
(0)
1,1,...,r

(0)
ℓ,ℓ , r

(1)
1,1,...,r

(1)
ℓ,ℓ ∈ ZN and

s(0), s(1) ∈ ZN .

1. Let F0(Ki,k,Si,k
; ·) : ZN → {0, 1} and

F (KS ; ·) : {0, 1}ℓ
2 → {0, 1}n, where n = tℓ,

F0 and F be punctured pseudorandom func-
tions.

2.

b
(0)
i = hi(m)⊕ (F0(Ki,1,Si,1 ; r

(0)
i,1 ), ...,

F0(Ki,ℓ,Si,ℓ
; r

(0)
i,ℓ )) (1 ≤ i ≤ l)

3. (c
(0)
1 , ..., c

(0)
ℓ ) = F (KS ; (b

(0)
1 , ..., b

(0)
ℓ ))

4. Repeat 2. and 3. for r
(1)
i,k and compute

(c
(1)
1 , ..., c

(1)
ℓ ) (1 ≤ i, k ≤ ℓ).

5. Compute ai = s(0) × c
(0)
i + s(1) × c

(1)
i (1 ≤

i ≤ ℓ).

6. Output va1
1 × va2

2 × ...× vaℓ

ℓ mod N� �
Figure 2: Full Domain Hash*1

1 Precisely, #Si,k = λq, i.e. Si,k = {Qi,k,θ | θ = 1, ..., λq}.
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� �
Full Domain Hash**

Constants: Collision resistance hash functions
hi : {0, 1}∗ → {0, 1}ℓ (i = 1, ..., ℓ), punc-
tured PRF F key KS , punctured PRF F0 keys

K1,1,S1,1 , ...,Kℓ,ℓ,Sℓ,ℓ
, random values v1, ..., vℓ

U←−
Z∗
N , X

(0)
1 , ..., X

(0)
q , X

(1)
1 , ..., X

(1)
q

U←− {0, 1}n,
R

(0)
1 , ..., R

(0)
q , R

(1)
1 , ..., R

(1)
q

U←− {0, 1}ℓ2 , S =

{R(0)
1 , ..., R

(0)
q , R

(1)
1 , ..., R

(1)
q }, Q

(0)
i,k,j,β , Q

(1)
i,k,j,β

U←−
ZN , Si,k = {Q(0)

i,k,j,0, Q
(0)
i,k,j,1, Q

(1)
i,k,j,0, Q

(1)
i,k,j,1 | 1 ≤

j ≤ q}, where X
(γ)
j = F (KS ;R

(γ)
j ) (γ ∈ {0, 1})

and β = F0(Ki,k,Si,k
;Q

(γ)
i,k,j,β) (j = 1, ..., q) (γ, β ∈

{0, 1}).
Inputs: m ∈M, r

(0)
1,1,...,r

(0)
ℓ,ℓ , r

(1)
1,1,...,r

(1)
ℓ,ℓ ∈ ZN and

s(0), s(1) ∈ ZN .

1. Let F0(Ki,k,Si,k
; ·) : ZN → {0, 1} and

F (KS ; ·) : {0, 1}ℓ
2 → {0, 1}n, where n = tℓ,

F0 and F be punctured pseudorandom func-
tions.

2.

b
(0)
i = hi(m)⊕ (F0(Ki,1,Si,1 , r

(0)
i,1 ), ...,

F0(Ki,ℓ,Si,ℓ
, r

(0)
i,ℓ )) (1 ≤ i ≤ l)

3. (c
(0)
1 , ..., c

(0)
ℓ ) = F (KS ; (b

(0)
1 , ..., b

(0)
ℓ ))

4. Repeat 2. and 3. for r
(1)
i,k and compute

(c
(1)
1 , ..., c

(1)
ℓ ) (1 ≤ i, k ≤ ℓ).

5. Compute ai = s(0) × c
(0)
i + s(1) × c

(1)
i (1 ≤

i ≤ ℓ).

6. Output va1
1 × va2

2 × ...× vaℓ

ℓ mod N� �
Figure 3: Full Domain Hash**2

3.2 Proof of Security

Our purpose in this section is that we prove the above
signature scheme is secure. Previously in the random
oracle model, we can refer to the hash oracle about
queries which are sent from the adversary. We must
replace a random oracle with an actual hash function
in the standard model, so we cannot use the property
above. Because of that reason, the full domain hash
signature scheme in [HSW14] uses punctured pseudo-
random functions (PRF), iO, and admissible hash func-
tions in a proof for an adaptive attack. Though the
scheme in [HSW14] has low efficiency of reduction, we
achieve optimal efficiency in the proposed scheme.

2 Precisely, F0(Ki,k,Si,k
;Qi,k,θ) is uniformly selected

from {0,1}. We set Qi,k,j,β = Qi,k,θ such that
F0(Ki,k,Si,k

;Qi,k,θ) = β for θ = 1, ... and j = 1, ..., q.

#{Qi,k,θ | F0(Ki,k,Si,k
;Qi,j,k,β) = β} ≥ 2q for β = {0, 1}

with overwhelming probability in λ (by Chernoff bound).

Theorem 3.1. If our obfuscation scheme is indistin-
guishably secure, punctured PRFs F and F0 are secure
and the RSA assumption holds, our signature scheme is
existentially unforgeable against adaptively chosen mes-
sage attack (EUF-CMA).

We describe a game sequence proof where the first
hybrid is corresponding to the original signature secu-
rity game. In this game in our scheme, the challenger
runs setup algorithm and some value is set. The ad-
versary receives vk and a hidden hash function from
the iO. The adversary adaptively sends mj to a sign-
ing oracle and gets its signature, σj and a random-

ness (r
(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , s

(0), s(1)). In the chal-
lenge phase, the adversary sends (m∗, σ∗) with a ran-

domness (r
(0)∗
1,1 , ..., r

(0)∗
ℓ,ℓ , r

(1)∗
1,1 , ..., r

(1)∗
ℓ,ℓ , s(0)∗, s(1)∗) such

that m∗ ̸= mj (j = 1, ..., q) to the challenger.
Previously in [HSW14], they used a partitioning tech-

nique to isolate a query space from a challenge space.
A query space is that a signing oracle can return a
correct signature. A partitioning technique was used
to give a reduction the ceiling of a probability in a
previous work. For example, an admissible hash func-
tion is used in [HSW14]. It devides a query space and
a challenge space from a message space and a query
space is larger than a challenge space. When an adver-
sary queries messages randomly, they are in a challenge
space barely in non-negligible probability. However in
our scheme, we do not use the partitioning technique,
that is, a query space is equivalent to a message space,
{0, 1}n. Hence, we can embedded an RSA challenge
problem into our scheme optimally for the security re-
duction.
For the solution to do that, we add a random value

to the input of a hash function (i.e.

H(m, r
(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , s

(0), s(1)) such that

r
(0)
i,k , r

(1)
i,k , s

(0), s(1) is random integers in ZN .). There-
fore, a signing oracle can control the output of a hash
function.
In the last game, we prove that we can construct an

adversary that breaks the RSA assumption by using
that breaks our signature scheme.

• Hyb0 : In the first hybrid, following EUF-CMA
game is played.

1. The challenger runs the setup algorithm. It
chooses e as a random chosen prime between
1 and ϕ(N) such that gcd(ϕ(N), e) = 1 and
|e| = O(λ).

2. The attacker receives the verification key.

3. H is created as an obfuscated program of
Full Domain Hash in Figure 1.

4. The attacker queries the signing oracle at
most q times on messages m1, ...,mq. In the
j-th query, the challenger receives mj and

chooses r
(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , s

(0), s(1) uni-
formly. It computes

σj = H(mj , r
(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , s

(0), s(1))d mod
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N . The attacker receives
(σj , r

(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , s

(0), s(1)).

5. The adversary sends

(m∗, σ∗, r
(0)∗
1,1 , ..., r

(0)∗
ℓ,ℓ , r

(1)∗
1,1 , ..., r

(1)∗
ℓ,ℓ , s(0)∗, s(1)∗)

as a challenge to the challenger. If

Verify(m∗, σ∗, r
(0)∗
1,1 , ..., r

(0)∗
ℓ,ℓ , r

(1)∗
1,1 , ..., r

(1)∗
ℓ,ℓ ,

s(0), s(1)) outputs 1, the adversary wins, oth-
erwise it loses.

• Hyb1 : This game is equivalent to Hyb0 except
for 3.. We use an obfuscated program of Full
Domain Hash* in Figure 2 instead of that of Full
Domain Hash in Figure 1.

• Hyb2 : This game is equivalent to Hyb1 except for
3.. We use an obfuscated program of Full Domain
Hash** in Figure 3 instead of that of Full Domain
Hash* in Figure 2.

• Hyb3 : The last game has following process.

1. The challenger runs the setup algorithm. It
chooses e as a random chosen prime between
1 and ϕ(N) such that gcd(ϕ(N), e) = 1 and
|e| = O(λ).

2. The attacker receives the verification key.

3. Set punctured PRF F (KS ;R
(γ)
j ) and

F0(Ki,k,Si,k
;Q

(γ)
i,k,j,β) (γ ∈ {0, 1}) to the same

ones in Figure 3.

4. Compute (v1, ..., vℓ) with the following pro-
cess. (v1, ..., vℓ) are integers used in the hash
function.

– Each (α1, ..., αℓ) is chosen as a random
integer in {0, 1}3|N | such that gcd(e, αi) =
1.

– g is chosen as a random integer.

– Compute v1 = gα1 mod N , v2 = gα2 mod
N , ..., vℓ = gαℓ mod N .

5. H is created as an obfuscated program of
Full Domain Hash** in Figure 3 by using
values specified 3. and 4..

6. The attacker queries the signing oracle at
most q times on messages m1, ...,mq. In
the j-th query, the challenger receives mj .

R
(0)
j = (b

(0)
1 , ..., b

(0)
ℓ ) andR

(1)
j = (b

(1)
1 , ..., b

(1)
ℓ ).

– Choose each r
(0)
i,k = Q

(0)
i,k,j,0 or r

(0)
i,k =

Q
(0)
i,k,j,1 such that (F0(Ki,1,Si,1 ; r

(0)
i,1 ),...,

F0(Ki,ℓ,Si,ℓ
, r

(0)
i,ℓ )) = b

(0)
i ⊕ hi(m).

– Choose each r
(1)
i,k with the same way for

Q
(1)
i,k,j,β .

– (c
(0)
1 , ..., c

(0)
ℓ ) = F (KS ; (b

(0)
1 , ..., b

(0)
ℓ )) and

(c
(1)
1 , ..., c

(1)
ℓ ) = F (KS ; (b

(1)
1 , ..., b

(1)
ℓ )).

– Randomly select s(0), s(1) ∈ ZN such

that e | s(0)Σαic
(0)
i + s(1)Σαic

(1)
i .

– Computes

σj = g(s
(0)Σαic

(0)
i +s(1)Σαic

(1)
i )/e mod N .

– The attacker receives
(σj , r

(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , s

(0), s(1)).

7. The adversary sends

(m∗, σ∗, r
(0)∗
1,1 , ..., r

(0)∗
ℓ,ℓ , r

(1)∗
1,1 , ..., r

(1)∗
ℓ,ℓ , s(0)∗, s(1)∗)

as a challenge to the challenger. If

Verify(m∗, σ∗, r
(0)∗
1,1 , ..., r

(0)∗
ℓ,ℓ , r

(1)∗
1,1 , ..., r

(1)∗
ℓ,ℓ ,

s(0)∗, s(1)∗) outputs 1, the adversary wins,
otherwise it loses.

When the following three lemma is proved, Theo-
rem3.1 is proved.

Lemma 3.1. If an indistinguishability obfuscator is
secure, the advantage of the adversary in Hyb0 is close
to that in Hyb1.

Proof. For the proof of this lemma, we give a reduction
to an indistinguishability obfuscator. We begin with
considering two algorithms Samp and D.
Samp(1λ) behaves as following. Samp runs Setup,

gets (vk, sk) and sets τ = (vk, sk). Finally, Samp
creates C1 as Full Domain Hash in Figure 1 and C2

as Full Domain Hash* in Figure 2. If the size of C1

is larger than that of C2, C2 is padded in order to
be a same size as C1 and vice versa. Because of the
functionality preserved property of punctured PRF and
the construction of our hash functions, C1 and C2 is
identical on every inputs.
D receives τ and iO(C1) or iO(C2), the obfusca-

tion of C1 or C2 as inputs. D invokes the adversary
in Hyb0/Hyb1. D plays the role of the challenger in
Hyb0 or Hyb1 by using iO(C1) or iO(C2). Finally, the
adversary sends a forgery signature and wins if it is
validly verified. If the attacker wins, D outputs 1. If
D receives iO(C1), the probability that D outputs 1
is exactly same as the one that the adversary wins in
Hyb0. Similarly, if D receives iO(C2), the probabil-
ity D outputs 1 is same as that the adversary wins in
Hyb1.
Therefore, if the difference of the adversary’s advan-

tage of Hyb0 and Hyb1 is non-negligible, D can distin-
guish iO(C1) from iO(C2) in non-negligible probability.
Thus, this lemma follows.

Lemma 3.2. If the punctured pseudorandom functions
F and F0 are secure, the advantage of the adversary in
Hyb1 is close to that in Hyb2.

Proof. We prove this lemma by giving a reduction to
the pseudorandomness property at punctured points
for punctured PRFs. We consider A, the adversary of
a punctured PRF.
A takes as an input F (KS ; ·) with F (K; ·) values for

S or F (KS ; ·) with random values for S. A creates
an obfuscated program H of Figure 2/Figure 3 by us-
ing the given punctured PRF. A runs Hyb1/Hyb2 with
the adversary by using H. If the adversary receives
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F (KS ; ·) with F (K; ·) values for S, this game is exact
same as Hyb1. If the adversary receives F (KS ; ·) with
random values for S, this game is exact same as Hyb2.
We do the same procedure for punctured PRF F0 in
the hybrid argument.

Hence, this lemma follows.

Lemma 3.3. The advantage of the adversary in Hyb2
is close to that in Hyb3.

Proof. Firstly, we prove that the distribution of vi ∈
Z∗
N (1 ≤ i ≤ l) in Hyb2 is statistically close to that

in Hyb3. Random variable vi in Hyb2 is uniformly
distributed in Z∗

N . In contrast, vi in Hyb3 is com-
puted by using αi such that gcd(e, αi) = 1. Namely,
when we compute vi = gαi mod ϕ(N), we exclude αi

such that αi = (αi mod ϕ(N)) +Eiϕ(N) ≡ 0 (mod e).
We choose Ei uniformly. In order to satisfy αi ̸≡ 0
(mod e), αi mod ϕ(N) is chosen as αi mod ϕ(N) ̸≡
−Eiϕ(N) (mod e). Eiϕ(N) mod e, that is the con-
strained condition of αi mod ϕ(N), is (almost) uni-
formly distributed, because gcd(e, ϕ(N)) = 1. Hence,
αi mod ϕ(N) is (almost) uniformly distributed. Since
vi is determined by αi mod ϕ(N), the distribution of vi
in Hyb2 is statistically close to that in Hyb3.

Secondly, we consider s(0) and s(1) when the adver-
sary sends j-th query in the hybrid game. The ad-

versary can get gΣαic
(0)
i mod ϕ(N) and gΣαic

(1)
i mod ϕ(N),

since the adversary can choose s(0), s(1) as he wants and
if s(0) = 1, s(1) = 0, the output of the hash function

is gΣαic
(0)
i mod ϕ(N) and the other one can be computed

in the same way. Variables s(0) and s(1) are chosen
randomly in Hyb2. Variables s(0) and s(1) are cho-

sen as e | s(0)Σαic
(0)
i + s(1)Σαic

(1)
i in Hyb3. Namely,

s(0)Σαic
(0)
i +s(1)Σαic

(1)
i ≡ 0 (mod e). If the challenger

chooses s(0) randomly, s(1) should satisfy the following

relation with s(0): s(1)Σαic
(1)
i ≡ s(0)Σαic

(0)
i (mod e).

That is, s(1)(Σ(αi mod ϕ(N))c
(1)
i + ΣEiϕ(N)c

(1)
i ) ≡

s(0)(Σ(αi mod ϕ(N))c
(0)
i +ΣEiϕ(N)c

(0)
i ) (mod e). The

values of {c(0)i } and {c(1)i } are unknown to the ad-
versary and uniformly distributed, because they are
the output of the punctured PRF at punctured points.
The adversary, however, can get partial information on

{c(0)i } and {c
(1)
i }, gΣαic

(0)
i mod ϕ(N) and gΣαic

(1)
i mod ϕ(N).

Then the values of {c(0)i } and {c
(1)
i } still have the free-

dom of randomness of (2ℓ − 2) variables. In addition,
the value of Ei is unknown to the adversary and dis-
tributed in a large space (|Ei| ≃ 2|N |). Therefore, s(1)
is uniformly and independently distributed from s(0).
Hence, the distribution of s(0) and s(1) in Hyb2 and
those of Hyb3 is equivalent.

Thus, this lemma follows.

Lemma 3.4. If the RSA assumption holds, the advan-
tage of an PPT adversary in Hyb3 is negligible.

Proof. For this proof, we begin consider two probabilis-
tic polynomial-time algorithms A and B. Let B be the

adversary for the RSA assumption, and A be that for
our signature scheme. B uses A in itself to break the
RSA assumption. B receives as input an RSA challenge
(N, e, y) where N = pq such that p and q are prime,
prime3 e ∈ [1, ϕ(N)] such that ϕ(N) = (p − 1)(q − 1)
and gcd (ϕ(N), e) = 1, and y ∈ Z∗

N .
B plays a role of the challenger in Hyb3 such that

g = y with the adversary A.
We assume that the adversary A outputs a valid sig-

nature (m∗, σ∗, r
(0)∗
1,1 , ..., r

(0)∗
ℓ,ℓ , r

(1)∗
1,1 , ..., r

(1)∗
ℓ,ℓ , s(0)∗, s(1)∗).

B can compute c
(0)∗
i , c

(1)∗
i and s(0)∗Σαic

(0)∗
i +s(1)∗Σαic

(1)∗
i .

B checks whether e ∤ s(0)∗Σαic
(0)∗
i + s(1)∗Σαic

(1)∗
i . If

e ∤ s(0)∗Σαic
(0)∗
i + s(1)∗Σαic

(1)∗
i , B breaks the RSA as-

sumption. We consider its probability.

There are two cases, where in case (1), {c(0)∗i } and

{c(1)∗i } are the output of punctured PRF F at punc-
tured points and otherwise in case (2). We now show
that case (1) occurs in negligible probability. For each
collision resistance hash function hi (1 ≤ i ≤ l), there
is difference, at least 1bit, between hi(m

∗) and hi(mj)
and we assume that it is in k-th bit. Since the punc-
tured points of punctured PRF F0 is uniformly dis-
tributed in ZN and the distribution of its output at
punctured points is also uniform, the probability that

the adversary chooses r
(0)
i,k such that (F0(Ki,1,Si,k

; r
(0)
i,k ) =

[bi]
(0)
k ⊕ [hi(m

∗)]k is 1
2 . Hence, the adversary can get

the output of punctured PRF F at punctured points
in negligible probability, at most 1

2ℓ
.

Then, we show that e | s(0)∗Σαic
(0)∗
i + s(1)∗Σαic

(1)∗
i

with negligible probability in case (2). The point here
is that the adversary has no idea of Ei such that αi =
αi mod ϕ(N)) + Eiϕ(N). The exponent of the out-

put of the hash function is s(0)∗(Σ(αi mod ϕ(N))c
(0)
i +

ΣEiϕ(N)c
(0)
i )+s(1)∗(Σ(αi mod ϕ(N))c

(1)
i +ΣEiϕ(N)c

(1)
i ).

Random value Ei is uniformly distributed in space of
which the size similarly equals to 2|N |. Hence, the

probability that e | s(0)∗Σαic
(0)∗
i +s(1)∗Σαic

(1)∗
i is close

to 1
e , because gcd(ϕ(N), e) = 1. Since the size of

e is O(λ), the adversary can send a forged signature

with negligible probability such that e | s(0)∗Σαic
(0)∗
i +

s(1)∗Σαic
(1)∗
i . Hence, gcd(e, s(0)∗Σαic

(0)∗
i +s(1)∗Σαic

(1)∗
i ) =

1 with overwhelming probability.

Let A be s(0)∗Σαic
(0)∗
i + s(1)∗Σαic

(1)∗
i . Note that

gcd(e,A) = 1.

σ∗ = y(s
(0)∗Σαic

(0)∗
i +s(1)∗Σαic

(1)∗
i ) 1

e

= yA· 1e

= xA (mod N),

where x = y
1
e mod N .

Since gcd(e,A) = 1, we can compute γ, δ such that

Aγ + eδ = 1

3 We assume that e is a prime for simplicity of description, but
it is easy to relax the primarity.
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with the extended euclidean algorithm.

σ∗γ × yδ = (xA)γ × (xe)δ

= x (mod N)

B can compute x = y
1
e mod N , which is the answer for

the RSA challenge. This contradicts the RSA assump-
tion.

This lemma follows.

3.3 Assessment of efficiency

The challenger can return valid signatures for all
signing queries in Hyb3 with the probability 1. The
probability that case (1) occurs is at most 1

2ℓ
and that

case (2) is 1
e (e = O(λ)).

Let ϵ be a negligible value. Adv
Hyb0

Σ,A denotes the
advantage of an adversary for Hyb0. Hyb0 is an EUF-
CMA game. Since Lemma 3.1.,..., 3.4. works, AdvEUF−CMA

Σ,A ,

which equals to Adv
Hyb0

Σ,A , satisfies following relation
with the advantage of an adversary for the RSA as-

sumption (AdvRSA
Σ,A = Adv

Hyb3

Σ,A )

AdvEUF−CMA
Σ,A = AdvHyb0

Σ,A

= AdvHyb1

Σ,A +AdviOΣ,A + ϵ

= AdvHyb1

Σ,A + ϵ (∵ iO is secure)

= AdvHyb2

Σ,A +AdvPPRF
Σ,A + ϵ

= AdvHyb2

Σ,A + ϵ (∵ PPRF is secure)

= AdvHyb3

Σ,A + ϵ

≤ AdvRSA
Σ,A +

1

2ℓ
+

1

e
+ ϵ

= AdvRSA
Σ,A + ϵ
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A Strongly Existentially Unforgeable
(sEUF)

In addition to the condition of EUF-CMA, even if an
adversary make a forged signature by using the same
message sent to a signing oracle, the forged signature
is also a valid forgery in sEUF.

B Improved version of our Randomized
Full Domain Hash Signature

In this paper, our proposed scheme (Randomized
Full Domain Hash Signature) is only unforgeable (not
strongly unforgeable). We can make sure of that with
a following example. We assume that in j-th query,
there is a valid signature of

(σ, (r
(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , s

(0), s(1)))

for mj and an adversary chooses the values

(r
(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , 2s

(0), 2s(1)) as

(r
(0)∗
1,1 , ..., r

(0)∗
ℓ,ℓ , r

(1)∗
1,1 , ..., r

(1)∗
ℓ,ℓ , s(0)∗, s(1)∗) for a forgery.

In i-th value (i = 1, ..., ℓ),

a∗i = s(0)∗ × c
(0)∗
i + s(1)∗ × c

(1)∗
i

= 2s(0) × c
(0)
i + 2s(1) × c

(1)
i

= 2(s(0) × c
(0)
i + s(1) × c

(1)
i )

= 2ai,

since PRFs F0 and F are deterministic.
A forgery σ∗ satisfies following relation with a j-th

valid signature σ responded for mj :

σ∗ = (va1
1 × va2

2 ×, ...,×v
aℓ

ℓ mod N)d

= (v2a1
1 × v2a2

2 ×, ...,×v
2aℓ

ℓ mod N)d

= (va1
1 × va2

2 ×, ...,×v
aℓ

ℓ mod N)2d

= σ2 mod N

Hence, an adversary can make a valid forgery,

(mj , σ
2, (r

(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , 2s

(0), 2s(1))),

for the same message, mj , queried to a signing oracle.
We can, however, make an improved signature scheme

under sEUF-CMA secure with simple changes from our
randomized full domain hash signature scheme under
EUF-CMA.

B.1 Syntax

The syntax consists of three PPT algorithm, [Setup,
Sign, Verify]. Each of them satisfies following settings:

• Setup(1λ) : The setup algorithm computes N =
pq where p and q is prime ϕ(N) = (p− 1)(q − 1)
and chooses prime e where |e| = O(λ) and d such
that d × e = 1 (mod ϕ(N)). It creates an ob-
fuscation of the program Full Domain Hash in
Figure 1. The program acts as a random oracle

type hash function. We refer to the program as

H(m, r
(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , s

(0), s(1))→ {0, 1}w.
The setup algorithm sets H, N and e as a verifi-
cation key, vk, and d and the parameters in Full
Domain Hash in Figure 1 as a signing key, sk.

• Sign(sk, m ∈ M) : This algorithm chooses ran-

dom integers, (r
(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , s

(0), s(1)) ∈
ZN and computes

σ = H(m, r
(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , r

(2)
1,1, ..., r

(2)
ℓ,ℓ , s

(1))d mod

N . It outputs (σ, r
(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , r

(2)
1,1, ..., r

(2)
ℓ,ℓ , s

(1)).

• Verify(vk,m, r
(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , r

(2)
1,1, ..., r

(2)
ℓ,ℓ , s

(1),
σ) : This checks

σe = H(m, r
(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , r

(2)
1,1, ..., r

(2)
ℓ,ℓ , s

(1)) mod
N . If the condition is true, outputs 1, otherwise
0.

We use two hash functions which have following con-
struction. Note that when we use them, they are con-
tained in an indistinguishability obfuscator.
After this, we omit an expression of security param-

eter, λ.� �
Full Domain Hash

Constants: Collision resistance hash functions
hi : {0, 1}∗ → {0, 1}ℓ (i = 1, ..., ℓ), PRF F key
K, PRF F0 keys K1,1, ...,Kℓ,ℓ and random values

v1,..., vℓ
U←− Z∗

N .

Inputs: m ∈ M, r
(0)
1,1,..., r

(0)
ℓ,ℓ , r

(1)
1,1,..., r

(1)
ℓ,ℓ , r

(2)
1,1,...,

r
(2)
ℓ,ℓ ∈ ZN and s(1) ∈ ZN .

1. Let F0(Ki,k; ·) : ZN → {0, 1} and F (K; ·) :

{0, 1}ℓ2 → {0, 1}n, where n = tℓ, F0 and F
be pseudorandom functions.

2.

b
(0)
i = hi(m)⊕ (F0(Ki,1; r

(0)
i,1 ), ..., F0(Ki,ℓ; r

(0)
i,ℓ ))

(1 ≤ i ≤ ℓ)

3. (c
(0)
1 , ..., c

(0)
ℓ ) = F (K; (b

(0)
1 , ..., b

(0)
ℓ ))

4. Repeat 2. and 3. for r
(1)
i,k and compute

(c
(1)
1 , ..., c

(1)
ℓ ) (1 ≤ i, k ≤ ℓ).

5. Repeat 2. and 3. for r
(2)
i,k and compute s(0)

(1 ≤ i, k ≤ ℓ).

6. Compute ai = s(0) × c
(0)
i + s(1) × c

(1)
i (1 ≤

i ≤ ℓ).

7. Output va1
1 × va2

2 × ...× vaℓ

ℓ mod N� �
Figure 4: Full Domain Hash
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� �
Full Domain Hash*

Constants: Collision resistance hash functions
hi : {0, 1}∗ → {0, 1}ℓ (i = 1, ..., ℓ), punc-
tured PRF F key KS , punctured PRF F0 keys

K1,1,S1,1 , ...,Kℓ,ℓ,Sℓ,ℓ
, random values v1, ..., vℓ

U←−
Z∗
N , R

(0)
1 , ..., R

(0)
q , R

(1)
1 , ..., R

(1)
q , R

(2)
1 , ..., R

(2)
q

U←−
{0, 1}ℓ2 , S = {R(0)

1 , ..., R
(0)
q , R

(1)
1 , ..., R

(1)
q , R

(2)
1 , ..., R

(2)
q },

Q
(0)
i,k,j,β , Q

(1)
i,k,j,β , Q

(2)
i,k,j,β

U←− ZN , Si,k =

{Q(0)
i,k,j,0, Q

(0)
i,k,j,1, Q

(1)
i,k,j,0, Q

(1)
i,k,j,1, Q

(2)
i,k,j,0, Q

(2)
i,k,j,1 |

1 ≤ j ≤ q}, where F (K;R
(γ)
j ) = F (KS ;R

(γ)
j )

(γ ∈ {0, 1, 2}) and F0(Ki,k;Q
(γ)
i,k,j,β) =

F0(Ki,k,Si,k
;Q

(γ)
i,k,j,β) (j = 1, ..., q) (γ ∈

{0, 1, 2}, β ∈ {0, 1}).

Inputs: m ∈ M, r
(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , r

(2)
1,1,

..., r
(2)
ℓ,ℓ ∈ ZN and s(1) ∈ ZN .

1. Let F0(Ki,k,Si,k
; ·) : ZN → {0, 1} and

F (KS ; ·) : {0, 1}ℓ
2 → {0, 1}n, where n = tℓ,

F0 and F be punctured pseudorandom func-
tions.

2.

b
(0)
i = hi(m)⊕ (F0(Ki,1,Si,1 ; r

(0)
i,1 ), ...,

F0(Ki,ℓ,Si,ℓ
; r

(0)
i,ℓ )) (1 ≤ i ≤ l)

3. (c
(0)
1 , ..., c

(0)
ℓ ) = F (KS ; (b

(0)
1 , ..., b

(0)
ℓ ))

4. Repeat 2. and 3. for r
(1)
i,k and compute

(c
(1)
1 , ..., c

(1)
ℓ ) (1 ≤ i, k ≤ ℓ).

5. Repeat 2. and 3. for r
(2)
i,k and compute s(0)

(1 ≤ i, k ≤ ℓ).

6. Compute ai = s(0) × c
(0)
i + s(1) × c

(1)
i (1 ≤

i ≤ ℓ).

7. Output va1
1 × va2

2 × ...× vaℓ

ℓ mod N� �
Figure 5: Full Domain Hash*

� �
Full Domain Hash**

Constants: Collision resistance hash functions
hi : {0, 1}∗ → {0, 1}ℓ (i = 1, ..., ℓ), punc-
tured PRF F key KS , punctured PRF F0 keys

K1,1,S1,1 , ...,Kℓ,ℓ,Sℓ,ℓ
, random values v1, ..., vℓ

U←−
Z∗
N , X

(0)
1 , ..., X

(0)
q , X

(1)
1 , ..., X

(1)
q , X

(2)
1 , ..., X

(2)
q

U←−
{0, 1}n, R(0)

1 , ..., R
(0)
q , R

(1)
1 , ..., R

(1)
q , R

(2)
1 , ..., R

(2)
q

U←−
{0, 1}ℓ2 , S = {R(0)

1 , ..., R
(0)
q , R

(1)
1 , ..., R

(1)
q , R

(2)
1 , ..., R

(2)
q },

Q
(0)
i,k,j,β , Q

(1)
i,k,j,β , Q

(2)
i,k,j,β

U←− ZN , Si,k =

{Q(0)
i,k,j,0, Q

(0)
i,k,j,1, Q

(1)
i,k,j,0, Q

(1)
i,k,j,1, Q

(2)
i,k,j,0, Q

(2)
i,k,j,1 |

1 ≤ j ≤ q}, where X
(γ)
j = F (KS ;R

(γ)
j )

(γ ∈ {0, 1, 2}) and β = F0(Ki,k,Si,k
;Q

(γ)
i,k,j,β)

(j = 1, ..., q) (γ ∈ {0, 1, 2}, β ∈ {0, 1}).

Inputs: m ∈ M, r
(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , r

(2)
1,1,

..., r
(2)
ℓ,ℓ ∈ ZN and s(1) ∈ ZN .

1. Let F0(Ki,k,Si,k
; ·) : ZN → {0, 1} and

F (KS ; ·) : {0, 1}ℓ
2 → {0, 1}n, where n = tℓ,

F0 and F be punctured pseudorandom func-
tions.

2.

b
(0)
i = hi(m)⊕ (F0(Ki,1,Si,1 , r

(0)
i,1 ), ...,

F0(Ki,ℓ,Si,ℓ
, r

(0)
i,ℓ )) (1 ≤ i ≤ l)

3. (c
(0)
1 , ..., c

(0)
ℓ ) = F (KS ; (b

(0)
1 , ..., b

(0)
ℓ ))

4. Repeat 2. and 3. for r
(1)
i,k and compute

(c
(1)
1 , ..., c

(1)
ℓ ) (1 ≤ i, k ≤ ℓ).

5. Repeat 2. and 3. for r
(2)
i,k and compute s(0)

(1 ≤ i, k ≤ ℓ).

6. Compute ai = s(0) × c
(0)
i + s(1) × c

(1)
i (1 ≤

i ≤ ℓ).

7. Output va1
1 × va2

2 × ...× vaℓ

ℓ mod N� �
Figure 6: Full Domain Hash**

B.2 Proof of Security

EUF-CMA の方式と同じように証明を行う。特に違
うところは最後の補題で、sEUFのチェックを行ってい
るところである。

Theorem B.1. If our obfuscation scheme is indistin-
guishably secure, punctured PRFs F and F0 are secure
and the RSA assumption holds, our signature scheme
is strongly existentially unforgeable against adaptively
chosen message attack (sEUF-CMA).

• Hyb0 : In the first hybrid, following EUF-CMA
game is played.

10



1. The challenger runs the setup algorithm. It
chooses e as a random chosen prime between
1 and ϕ(N) such that gcd(ϕ(N), e) = 1 and
|e| = O(λ).

2. The attacker receives the verification key.

3. H is created as an obfuscated program of
Full Domain Hash in Figure 1.

4. The attacker queries the signing oracle at
most q times on messages m1, ...,mq. In the
j-th query, the challenger receives mj and

chooses r
(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , r

(2)
1,1, ..., r

(2)
ℓ,ℓ , s

(1)

uniformly. It computes

σj = H(mj , r
(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , r

(2)
1,1, ..., r

(2)
ℓ,ℓ , s

(1))d mod
N . The attacker receives
(σj , r

(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , r

(2)
1,1, ..., r

(2)
ℓ,ℓ , s

(1)).

5. The adversary sends

(m∗, σ∗, r
(0)∗
1,1 , ..., r

(0)∗
ℓ,ℓ , r

(1)∗
1,1 , ..., r

(1)∗
ℓ,ℓ , r

(2)∗
1,1 , ..., r

(2)∗
ℓ,ℓ , s(1)∗)

as a challenge to the challenger. If

Verify(m∗, σ∗, r
(0)∗
1,1 , ..., r

(0)∗
ℓ,ℓ , r

(1)∗
1,1 , ..., r

(1)∗
ℓ,ℓ ,

r
(2)∗
1,1 , ..., r

(2)∗
ℓ,ℓ , s(1)) outputs 1, the adversary

wins, otherwise it loses.

• Hyb1 : This game is equivalent to Hyb0 except
for 3.. We use an obfuscated program of Full
Domain Hash* in Figure 2 instead of that of Full
Domain Hash in Figure 1.

• Hyb2 : This game is equivalent to Hyb1 except for
3.. We use an obfuscated program of Full Domain
Hash** in Figure 3 instead of that of Full Domain
Hash* in Figure 2.

• Hyb3 : The last game has following process.

1. The challenger runs the setup algorithm. It
chooses e as a random chosen prime between
1 and ϕ(N) such that gcd(ϕ(N), e) = 1 and
|e| = O(λ).

2. The attacker receives the verification key.

3. Set punctured PRF F (KS ;R
(γ)
j ) and

F0(Ki,k,Si,k
;Q

(γ)
i,k,j,β) (γ ∈ {0, 1}) to the same

ones in Figure 3.

4. Compute (v1, ..., vℓ) with the following pro-
cess. (v1, ..., vℓ) are integers used in the hash
function.

– Each (α1, ..., αℓ) is chosen as a random
integer in {0, 1}3|N | such that gcd(e, αi) =
1.

– g is chosen as a random integer.

– Compute v1 = gα1 mod N , v2 = gα2 mod
N , ..., vℓ = gαℓ mod N .

5. H is created as an obfuscated program of
Full Domain Hash** in Figure 3 by using
values specified 3. and 4..

6. The attacker queries the signing oracle at
most q times on messages m1, ...,mq. In

the j-th query, the challenger receives mj .

R
(0)
j = (b

(0)
1 , ..., b

(0)
ℓ ), R

(1)
j = (b

(1)
1 , ..., b

(1)
ℓ )

and R
(2)
j = (b

(2)
1 , ..., b

(2)
ℓ ).

– Choose each r
(0)
i,k = Q

(0)
i,k,j,0 or r

(0)
i,k =

Q
(0)
i,k,j,1 such that (F0(Ki,1,Si,1 ; r

(0)
i,1 ),...,

F0(Ki,ℓ,Si,ℓ
, r

(0)
i,ℓ )) = b

(0)
i ⊕ hi(m).

– Choose each r
(1)
i,k with the same way for

Q
(1)
i,k,j,β .

– Choose each r
(2)
i,k with the same way for

Q
(2)
i,k,j,β .

– (c
(0)
1 , ..., c

(0)
ℓ ) = F (KS ; (b

(0)
1 , ..., b

(0)
ℓ )), (c

(1)
1 , ..., c

(1)
ℓ ) =

F (KS ; (b
(1)
1 , ..., b

(1)
ℓ )) and s(0) = F (KS ; (b

(2)
1 , ..., b

(2)
ℓ )).

– Randomly select s(1) ∈ ZN such that

e | s(0)Σαic
(0)
i + s(1)Σαic

(1)
i .

– Computes

σj = g(s
(0)Σαic

(0)
i +s(1)Σαic

(1)
i )/e mod N .

– The attacker receives
(σj , r

(0)
1,1, ..., r

(0)
ℓ,ℓ , r

(1)
1,1, ..., r

(1)
ℓ,ℓ , s

(0), s(1)).

7. The adversary sends

(m∗, σ∗, r
(0)∗
1,1 , ..., r

(0)∗
ℓ,ℓ , r

(1)∗
1,1 , ..., r

(1)∗
ℓ,ℓ , r

(2)∗
1,1 ,

..., r
(2)∗
ℓ,ℓ , s(1)∗) as a challenge to the challenger.

If Verify(m∗, σ∗, r
(0)∗
1,1 , ..., r

(0)∗
ℓ,ℓ , r

(1)∗
1,1 , ..., r

(1)∗
ℓ,ℓ ,

r
(2)∗
1,1 , ..., r

(2)∗
ℓ,ℓ , s(0)∗, s(1)∗) outputs 1, the ad-

versary wins, otherwise it loses.

When the following three lemma is proved, Theo-
rem3.1 is proved.

Lemma B.1. If an indistinguishability obfuscator is
secure, the advantage of the adversary in Hyb0 is close
to that in Hyb1.

Proof. This proof is the same as that in section 3.

Lemma B.2. If the punctured pseudorandom func-
tions F and F0 are secure, the advantage of the ad-
versary in Hyb1 is close to that in Hyb2.

Proof. This proof is the same as that in section 3.

Lemma B.3. The advantage of the adversary in Hyb2
is close to that in Hyb3.

Proof. Firstly, we prove that the distribution of vi ∈
Z∗
N (1 ≤ i ≤ l) in Hyb2 is statistically close to that

in Hyb3. Random variable vi in Hyb2 is uniformly
distributed in Z∗

N . In contrast, vi in Hyb3 is com-
puted by using αi such that gcd(e, αi) = 1. Namely,
when we compute vi = gαi mod ϕ(N), we exclude αi

such that αi = (αi mod ϕ(N)) +Eiϕ(N) ≡ 0 (mod e).
We choose Ei uniformly. In order to satisfy αi ̸≡ 0
(mod e), αi mod ϕ(N) is chosen as αi mod ϕ(N) ̸≡
−Eiϕ(N) (mod e). Eiϕ(N) mod e, that is the con-
strained condition of αi mod ϕ(N), is (almost) uni-
formly distributed, because gcd(e, ϕ(N)) = 1. Hence,
αi mod ϕ(N) is (almost) uniformly distributed. Since
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vi is determined by αi mod ϕ(N), the distribution of vi
in Hyb2 is statistically close to that in Hyb3.

Secondly, we consider s(0) and s(1) when the adver-
sary sends j-th query in the hybrid game. A variable
s(1) are chosen randomly in Hyb2. On the other hand,

a variable s(1) are chosen as e | s(0)Σαic
(0)
i +s(1)Σαic

(1)
i

in Hyb3. Namely, s(0)Σαic
(0)
i +s(1)Σαic

(1)
i ≡ 0 (mod e).

We recall that a variable s(0) is computed as a uni-
formly distributed value. Then, a variable s(1) should

satisfy the following relation with s(0): s(1)Σαic
(1)
i ≡

s(0)Σαic
(0)
i (mod e). That is, s(1)(Σ(αi mod ϕ(N))c

(1)
i +

ΣEiϕ(N)c
(1)
i ) ≡ s(0)(Σ(αi mod ϕ(N))c

(0)
i +ΣEiϕ(N)c

(0)
i )

(mod e). The values of {c(0)i } and {c
(1)
i } are unknown

to the adversary and uniformly distributed, because
they are the output of the punctured PRF at punctured

points. Though the adversary can get gs
(0)Σαic

(1)
i mod ϕ(N),

since the adversary can choose s(1) as he wants and if

s(1) = 0, the output of the hash function is gs
(0)Σαic

(0)
i mod ϕ(N),

the adversary cannot get information about {c(0)i }, since
s(0) is a uniformly distributed value. Then the values

of {c(0)i } and {c(1)i } still have the freedom of random-
ness of 2ℓ variables. In addition, the value of Ei is
unknown to the adversary and distributed in a large
space (|Ei| ≃ 2|N |). Therefore, s(1) is uniformly and
independently distributed from s(0). Hence, the distri-
bution of s(1) in Hyb2 and those of Hyb3 is equivalent.

Thus, this lemma follows.

Lemma B.4. If the RSA assumption holds, the ad-
vantage of an PPT adversary in Hyb3 is negligible.

Proof. For this proof, we begin consider two probabilis-
tic polynomial-time algorithms A and B. Let B be the
adversary for the RSA assumption, and A be that for
our signature scheme. B uses A in itself to break the
RSA assumption.
B receives as input an RSA challenge (N, e, y) where

N = pq such that p and q are prime, prime4 e ∈
[1, ϕ(N)] such that ϕ(N) = (p−1)(q−1) and gcd (ϕ(N), e) =
1, and y ∈ Z∗

N .
B plays a role of the challenger in Hyb3 such that

g = y with the adversary A.
We assume that the adversary A outputs a valid sig-

nature (m∗, σ∗, r
(0)∗
1,1 , ..., r

(0)∗
ℓ,ℓ , r

(1)∗
1,1 , ..., r

(1)∗
ℓ,ℓ , r

(2)∗
1,1 , ..., r

(2)∗
ℓ,ℓ , s(1)∗).

B can compute c
(0)∗
i , c

(1)∗
i , s(0)∗ and s(0)∗Σαic

(0)∗
i +

s(1)∗Σαic
(1)∗
i . B checks whether e ∤ s(0)∗Σαic

(0)∗
i +

s(1)∗Σαic
(1)∗
i . If e ∤ s(0)∗Σαic

(0)∗
i + s(1)∗Σαic

(1)∗
i , B

breaks the RSA assumption. We consider its probabil-
ity.

There are two cases, where in case (1), {c(0)∗i } and

{c(1)∗i } are the outputs of punctured PRF F at punc-
tured points and otherwise in case (2). We now show
that case (1) occurs in negligible probability. In sEUF-
CMA game, an adversary can adoptmj used in a query

4 We assume that e is a prime for simplicity of description, but
it is easy to relax the primarity.

phase asm∗ to make a forgery, σ∗, that is different from

σj . That is, when an adversary compute b
(0)
i , it has to

choose an another randomness, at least 1 variable, and

we assume that variable is r
(0)
i,k . Since the punctured

points of punctured PRF F0 is uniformly distributed
in ZN and the distribution of its output at punctured
points is also uniform, the probability that the adver-

sary chooses r
(0)
i,k such that (F0(Ki,1,Si,k

; r
(0)
i,k ) = [bi]

(0)
k ⊕

[hi(m
∗)]k is 1

2 . Hence, the adversary can get the output
of punctured PRF F at punctured points in negligible
probability, at most 1

2ℓ
.

Then, we show that e | s(0)∗Σαic
(0)∗
i + s(1)∗Σαic

(1)∗
i

with negligible probability in case (2). The point here
is that the adversary has no idea of Ei such that αi =
αi mod ϕ(N)) + Eiϕ(N). The exponent of the out-

put of the hash function is s(0)∗(Σ(αi mod ϕ(N))c
(0)
i +

ΣEiϕ(N)c
(0)
i )+s(1)∗(Σ(αi mod ϕ(N))c

(1)
i +ΣEiϕ(N)c

(1)
i ).

Random value Ei is uniformly distributed in space of
which the size similarly equals to 2|N |. Hence, the

probability that e | s(0)∗Σαic
(0)∗
i +s(1)∗Σαic

(1)∗
i is close

to 1
e , because gcd(ϕ(N), e) = 1. Since the size of

e is O(λ), the adversary can send a forged signature

with negligible probability such that e | s(0)∗Σαic
(0)∗
i +

s(1)∗Σαic
(1)∗
i . Hence, gcd(e, s(0)∗Σαic

(0)∗
i +s(1)∗Σαic

(1)∗
i ) =

1 with overwhelming probability.

Let A be s(0)∗Σαic
(0)∗
i + s(1)∗Σαic

(1)∗
i . Note that

gcd(e,A) = 1.

σ∗ = y(s
(0)∗Σαic

(0)∗
i +s(1)∗Σαic

(1)∗
i ) 1

e

= yA· 1e

= xA (mod N),

where x = y
1
e mod N .

Since gcd(e,A) = 1, we can compute γ, δ such that

Aγ + eδ = 1

with the extended euclidean algorithm.

σ∗γ × yδ = (xA)γ × (xe)δ

= x (mod N)

B can compute x = y
1
e mod N , which is the answer for

the RSA challenge. This contradicts the RSA assump-
tion.
This lemma follows.
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