
Copyright c⃝2016 The Institute of Electronics,
Information and Communication Engineers

SCIS 2016 2016 Symposium on
Cryptography and Information Security
Kumamoto, Japan, Jan. 19 - 22, 2016

The Institute of Electronics,
Information and Communication Engineers

A Note on Authenticated Key Exchange in Cryptocurrency

Tatsuya Kyogoku ∗ Masayuki Abe † Tatsuaki Okamoto †

Abstract: In this paper we focus on how to realize end-to-end secure communication between
cryptocurrency users. While a cryptocurrency users have not only financial transactions but also com-
mercial transactions (e.g., acknowledgment of receipt, follow-up correspondence, etc), a cryptocurrency
only guarantees the security of financial transactions. If we want to get end-to-end security, we need
another long term key to execute authenticated key exchange(AKE), but It is wasteful to require two
long term keys. In order to solve this problem, a bitcoin-based authenticated key exchange protocol
was proposed by Patrick McCorry et al. This protocol executes all interactions by the same keys.
However, this protocol has the following inefficiencies; 1) Request a unnecessary payment to generate
a session key, and 2) unable to prove the security in a formal model. To overcome the above inef-
ficiencies, we present a new protocol that achieves secure commercial transactions as well as secure
financial transactions. Our protocol never requests any extra long term keys, any extra payments and
any trusted third parties. We prove the security of our protocol in the Canetti-Krawczyk model.

Keywords: Authenticated Key Exchange, Cryptocurrency, Canetti-Krawczyk model, ECDSA,
Schnorr signature

1 Introduction

An electronic payment system that differs from a
physical currency needs to address reliability of the
trading partner and double spending problem. In com-
mercial applications, merchants are wary, and demands
more information from their customers than they usu-
ally need, and must detect double spending in some
way because the movement of the currency cannot be
confirmed as physical trading. In order to solve these
two problems typically a financial transaction over the
Internet requires a trusted third party. While the sys-
tem works well, it still suffers from the inherent weak-
nesses of the trust-based model. Therefore Satoshi
Nakamoto proposed an electronic payment system Bit-
coin [1] in which not requires a trusted third party.
This system based on cryptographic proof instead of
trust, allowing any two willing parties to transact di-
rectly with each other without the need for a trusted
third party. Satoshi Nakamoto proposes a solution to
the double-spending problem using a peer-to-peer dis-
tributed timestamp server to generate computational
proof of the chronological order of transactions. The
system is secure as long as honest nodes collectively
control more CPU power than any cooperating group
of attacker nodes. While the security of cryptocurrency
transactions has been extensively studied, little atten-
tion has been paid to the security of post-transaction
correspondence. The merchant and the customer often
need to engage in commercial transactions after a finan-
cial transactions is completed. So they have to generate
a new long term key pair to establish a session key by

∗ Graduate School of Informatics, Kyoto University
† NTT Secure Platform Labolatories, NTT Corporation

AKE protocol. It is wasteful to require another long
term keys. In order to solve this problem Bitcoin-based
authenticated key exchange (AKE) [2] was proposed.
Bitcoin-based AKE is the first study on how to real-
ize end-to-end secure communication between Bitcoin
users in a post-transaction scenario without requiring
any trusted third party or additional authentication
credentials. However this method is not perfect. We
point out two matters.

1. Blockchain has to contain both customer and mer-
chant’s signature in order to complete AKE ses-
sion, but only the customer’s signature is added
to blockchain when the customer pays Bitcoin to
the merchant. Therefore, this method needs ex-
tra payment that send from the merchant to the
customer to get another signature.

2. In [2] they show a proof of security about their
scheme in the informal model. They consider
three security requirements, (Private key secrecy,
Full forward secrecy,and Session key secrecy) that
informally defined. Private key secrecy means
that the adversary is unable to gain any extra
information about the private key of an honest
party by eavesdropping her communication with
other parties. Full forward secrecy means that
the adversary is unable to determine the shared
secret of an eavesdropped AKE session in the past
between a pair of honest parties, even if their pri-
vate key are leaked subsequently. Session key
secrecy means that the adversary is unable to
determine the shared secret between two honest
parties by eavesdropping their communication or
changing their message.

1



Our contributions:
In this paper, we present a new protocol Π that achieves
the following.

1. Eliminate extra payment that send from the mer-
chant to the customer.

2. We focus on how to prove the security in formal
model. Concretely we are now trying to obtain
proof of security in the Canetti-Krawczyk(CK)
model [3].
Bitcoin uses Elliptic Curve Digital Signature Al-
gorithm(ECDSA) [5] when a user pays some bit-
coins, however ECDSA is unable to simulate a
signature without a secret key. This mean that if
we use ECDSA, we can’t prove the security. To
solve this problem, we prepare an electronic pay-
ment system, and an AKE protocol Both protocol
based on the Schnorr signature [6] which can sim-
ulate without knowing a secret key, and we make
end-to-end secure communication between cryp-
tocurrency users by proving the security in the
CK model with a sining oracle when both proto-
cols executed by the same long term key pair.

Organization of the paper:
This paper is organized as follows. In Section 2, we
recall the notions of a signature scheme and a security
model, and present some useful definitions and nota-
tions. In Section 3, we introduse related works. In
Section 4, we give a new protocol Π and denote proof
of security in Section 5. Finally we denote conclusion.

2 Preliminaries

In this section we introduce some technics that we
use in our scheme.

2.1 ECDSA

Domain parameters D = (CURB : Using elliptic curb,
G : Generator for the elliptic curve, n : integer order
of G).
H = hash function . Alice creates private key d ∈
[1, n− 1], and a public key curve point Q = d×G. For
Alice to sign a message m, she follows these steps:

1. Choose k ∈R [1, n− 1].

2. Compute kG = (x1, y1) where x1 ∈R [0, q − 1]

3. Compute r = x1 mod n.
If r = 0, then go to Step 1.

4. Compute e = H(m).

5. Compute s = k−1(e+ dr) mod n.
If s = 0, then go to Step 1.

6. Return (r, s).

Verification :

1. Verify r ∈ [1, n− 1] s ∈ [1, n− 1].

2. Compute e = H(m).

3. Let z be the Ln left most bits of e..

4. Compute w = s−1 mod n.

5. Compute u1 = zw mod n.

6. Compute u2 = rw mod n.

7. Compute (x1, x2) = u1 ×G+ u2 ×QA.

8. The signature is valid if r ≡ x1 (mod n), invalid
otherwise.

2.2 Schnorr signature

Public key : p, q, g, A
p and q are prime number q | p -1.
gq ≡ 1 (mod p).
A = ga mod p.

Secret key : a
R
∈ Zq

When sign a message m, follows these steps:

1. Choose r
R
∈ Zq.

2. Compute e = H(gr,m)

3. Compute s = (r − ae)

4. Return (e, s).

Verification :

1. Compute e′ = H(gsAe)

2. The signature is valid If e’ = e , invalid otherwise.

2.3 The discrete logarithm(DL) assumption

p: Prime number.
G: Cyclic group of order p.
g: Generator of G.
The DL assumption in G states that, givenA = ga ∈ G,
it is computationally infeasible to compute the discrete
logarithm a of A.

2.4 Computational Diffie-Hellman(CDH) assump-
tion

p: Prime number.
G: Cyclic group of order p.
g: Generator of G. The CDH assumption in G states
that, given (g, gx, gy) for randomly chosen generator
g and randomly chosen points, it is computationally
infeasible to compute gxy.

2.5 Gap Diffie-Hellman(GDH) assumption

p: Prime number.
G: Cyclic group of order p.
g: Generator of G.
DDH: The Decisional Diffie-Hellman oracle that is
able to decide whether a tuple (g, gx

′
, gy

′
, gz

′
) is such

that z′ = x′y′ or not.
The GDH assumption in G states that, given (g, gx, gy)
for randomly chosen generator g and randomly chosen
points, it is computationally infeasible to compute gxy

with the help of DDH.

2



2.6 HMQV [7] and sHMQV [8] protocols

We use a sHMQV protocol to execute authenticated
key exchange.

Figure 1: AKE protocol. Â and B̂ are the identi-
fier. (a,A) and (b,B) are the key pairs (secret key,
public key). In HMQV, d = (X, B̂), e = (Y, Â) and
both party sets the session key k = H(ZÂ) = H(ZB̂).

in sHMQV d = (X, B̂, Y ), e = (Y, Â,X) and both
party sets the session key k = H(ZÂ, Â, B̂,X, Y ) =

H(ZB̂ , B̂, Â, Y,X).

2.7 Canetti-Krawczyk(CK) model adopted to
cryptocurrency transaction

The strongest security definition for AKE protocols
was formalized by Canetti and Krawczyk [3] [4].This
model guarantees that the leaking of a session key or
session state information will have no effects on the
security of other sessions. We introduce the security
environment, the execution model and the definition of
security about a key exchange protocol.
Unauthenticated network model
The AKE security environment involves multiple hon-
est n parties [P1 · · ·Pn] and each party has k sessions
[s1 · · · sk] and an adversary M controls all sessions sched-
ule. (We stress that an AKE session is executed by a
single party.)
In this model, M delivers party’s messages. Therefore
listens all party’s messages and controls what messages
will reach a honest party or not. Additionally, M can
change these messages or inject its own generated arbi-
trary messages. In addition to the above basic attacker
capabilities, M can execute following queries.

1. Corrupt query : Revealing all secret information,
and taking full control of any party.

2. Session reveal query : Revealing the session key
of any session.

3. Session state reveal query : Revealing the session
specific secret information of any session without
revealing the long-term secret key.

Execution model
When M requires Pi to establish a session with Pj ,
we describe (Pi, Pj , s). s means a session identifier,
and same parties never have a same session identifier
twice. If the session (Pj , Pi, s

′) which have a same ses-
sion identifier (s = s’) exists, we define that these two

sessions (Pi, Pj , s) and (Pj , Pi, s
′) are matching, and

when we focus on the session (Pi, Pj , s), we refer to
(Pj , Pi, s

′) as a matching session.
Definition of security
In security analysis we use the term clean state. If the
session is clean, its meets the following conditions.

1. The adversary M never executes Session reveal
query and Session state reveal query to the ses-
sion and a matching session.

2. The adversary M never corrupt parties that exe-
cutes the session.

The adversary M can select any clean completed session
(completed means that the party computed a session
key, and we refer to this session as the test session), and
executes Test query to the test session just only once
at any moment. We describe test query as following.
When the party receive test query

1. Choose b
R← [0, 1]

2. If b = 0
Return random string.

3. If b = 1
Return test session’s session key.

After receiving a value, the adversary M must hold
clean state about the test session and the matching
session, and at the close of this query, output some
value b’. The adversary ’s goal is to guess correctly
which of the cases was selected. If two parties which
are not corrupted complete a matching session, then
their session keys are the same, and if result of the test
session query is

Pr[b′ = b] ≤ 1

2
+ ϵ

, then this key exchange protocol is session key security.

3 Abstraction of cryptocurrency trans-
action using DL-type key

To prove the security of our protocol Π, we have to
create a sining oracle which returns the corresponding
signature when the sining oracle receive a message and
the public key. To generate a Schnorr signature on
an input message(TB̂), the sining oracle OS run in the
following way. (We are modeling the hash function H
as a random oracle)

1. Receive a message TB̂ and the public key B.

2. Choose sTB , eTB

R
∈ Zq.

3. Compute gr = gsTBBeTB .

4. Define eTB
= H(gr, TB̂).

5. Return (eTB , sTB ).

In this paper we give this oracle OS to the adversary
that attacks our protocol Π in the CK model.

3



4 Protocol Π

Our protocol uses an electronic payment system that
only change bitcoin’s sining algorithm from ECDSA to
Schnorr, and sHMQV [8] (a variant of HMQV) as a
AKE protocol. We first introduce some preliminaries
used in our protocol Π.
Â, B̂ : Parties identifier.
a, b: Secret keys.
A,B : Public keys.
TA: A’s transaction.
H,H1,H2: Hash functions.

4.1 session activation

1. Payment(Â, B̂): Â performs the following.

(a) Select r
R
∈ Zq.

(b) Compute R = gr.

(c) Compute eTA = H(R, TA).

(d) Compute sTA
= r − aeTA

.

(e) Select x
R
∈ Zq.

(f) Compute X = gx.

(g) Send X and signature (eTA , sTA) to B̂ with
identifier (Â, B̂,X).

2. Respond(B̂, Â, X)

(a) B̂ responds if (eTA , sTA) is in the authorized
block chain.

(b) Select y
R
∈ Zq.

(c) Compute Y = gy.

(d) Send Y to Â.

(e) Compute e = H1(Y, Â,X).

(f) Compute sB = y − eb

(g) Compute ZB = (XA−d)sB .

(h) Compute a session key.
K2 = H2(ZB , Â, B̂,X, Y )
and complete session with identifier (B̂, Â, Y,X)

3. Complete(Â, B̂,X, Y )

(a) d = H1(X, B̂, Y )

(b) Compute sA = x− da

(c) Compute ZA = (Y B−e)sA

(d) Compute a session key
K1 = H2(ZA, Â, B̂,X, Y )
and complete session with identifier (Â, B̂,X, Y )

5 Proof of Security

5.1 AKE security

Theorem 1
Under the GDH assumption, the protocol Π with it’s
hash functions modeled as a random oracle, is a secure
key exchange protocol in the Canetti Krawczyk model

with the sining oracle.

lemma 1
If two parties Â, B̂ complete the matching session, then
their session keys are the same.
Proof.

ZA = (Y B−e)sA

= (gyg−be)sA

= g(y−be)(x−ad)

(1)

ZB = (XA−d)sB

= (gxg−ad)sB

= g(x−ad)(y−be)

(2)

therefore H2(ZA, Â, B̂,X, Y ) = H2(ZB , B̂, Â, Y,X)

lemma 2
Under the GDH assumption, there is no feasible ad-
versary that succeeds in distinguishing the session key
from a random value with nonnegligible probability in
the test query.

Proof.
The adversary M has only two possible strategies to dis-
tinguish H2(Z, Â, B̂,X0, Y0) from a random value. (We
are modelingH1,H2 as a random oracle and (Â, B̂,X0, Y0)
as a identifier of the test session.)

1. Forging attack
The adversary M succeeds in computing the value
(Z, Â, B̂,X0, Y0), and gets the session key to use
hash function H2 on it.

2. Key replication attack
The adversary M succeeds in establishing a ses-
sion which is not the test session but has the same
session key as the test session. In this case M can
distinguish a session key from random value with-
out knowing the value (Z, Â, B̂,X0, Y0).

5.1.1 Infeasibility of forging attack

In this strategy, the forger is denoted by F, and the
adversary that succeed in forging is denoted by M. The
test session (Â, B̂,X0, Y0) considers Â alone from a defi-
nition of the CK model, but Â surely receives a message
(B,A, Y0), because the test session parties are never
corrupted. The generation of a value Y0 that delivered
to Â can fall under one of the following cases.

1. Y0 was generated by B̂ in the matching session.
(B̂, Â, Y0, X0)

2. Y0 was never generated by B̂.

3. Y0 was generated by B̂ with another party.
(B̂, Â′, Y0, X

′) (A′ ̸= A)

4. Y0 was generated by B̂ with Â but in another
session.
(B̂, Â, Y0, X

′) (X ′ ̸= X)

4



We denote the probability that the adversary successes
in the forging attack is negligible in each case. For each
of the cases we build a forger F which given access to
a DDH oracle DDH, and solves the GDH problem.

Case 1:
In this case forger F takes input (X0, Y0) ∈ G2, and
works as follows.

1. Make parties P1, · · · , Pn.

2. Select two integers i, j ← [1, . . . , n].

3. Select two integers t1, t2 ← [1, . . . , k].

4. Select two honest parties pi = Â and pj = B̂

5. Set a key pairs(secret key, public key) pi ← (a,A)
pj ← (b,B), and assign random static key pairs
to other parties.

Note that, F guesses that M will select t1-th session at
Pi or t2-th session at Pj as the test session.
M makes queries as follows.

1. Payment(P̂1, P̂2):
P̂1 executes the Payment() activation of the pro-
tocol. However if the session being created is t1-
th session at Â (or t2-th session at B̂), F checks
whether P̂2 is B̂(or Â). If so, F sets the ephemeral
public key to X0(orY0) from the input of F. Oth-
erwise, F aborts.

2. Respond(P̂1, P̂2, Y )
P̂1 executes the Respond() activation of the pro-
tocol. However if the session being created is t1-
th session at Â (or t2-th session at B̂), F checks
whether Y = Y0 (or Y = X0). If so, F sets the
ephemeral public key to X0(orY0) from the input
of F, and completes the session without comput-
ing a session key. Otherwise, F aborts.

3. Complete(P̂1, P̂2, X, Y )
P̂1 executes the Complete() activation of the pro-
tocol. However if the session being created is t1-
th session at Â (or t2-th session at B̂), F checks
whether Y = Y0 (or Y = X0). If so, F com-
pletes the session without computing a session
key. Otherwise, F aborts.

4. Session State Reveal (s):
F return to M the schnorr signature and the shared
secret Z. if s is t1-th session at Â (or t2-th session
at B̂), F aborts.

5. Session Key Reveal (s)
F return to M the session key of s. If s is t1-th
session at Â(or t2−th session at B̂), F aborts.

6. Corrupt(P̂ )
F gives M the private key of P̂ and state infor-
mation for current sessions and session keys at
P̂ . From the moment of corruption M takes full
control over P̂ . If M tries to corrupt Â or B̂, F
aborts.

7. H1(X, P̂1, Y ):
If the input value was previously asked in other
times, returns the same value.
If the input value was not previously asked, F
simulates a random oracle on it.

8. H2(Z, P̂1, P̂2, X, Y ):
If the input value was previously asked in other
times, returns the same value.
If the input value was not previously asked, F
simulates a random oracle on it.

If F asked H2 with P̂1 = Â, P̂2 = B̂, X = X0, Y = Y0

for some Z value, and DDH(X0A
d, Y0B

e) = 1 where
d = H1(X0, B̂, Y0) and e = H1(Y0, Â,X0), then F can
compute

CDH(X0, Y0) = ZXeb
0 Y da

0 g−deab.

It means that If M succeeds in forging Z, F solves GDH
problem. Therefore Pr[F ] ≤ ϵ, and if M selects t1-th
session at Pi or t2-th session at Pj as the test session
and the matching session, F perfectly simulates M’s
environment except with negligible probability.
The probability of guess right is 2

(nk)2
. Therefore the

success probability of M is negrigible.

Pr[F ] ≥ 2

(nk)2
Pr[M ].

Case 2:

In this case F takes input (X0, B) ∈ G2 and works as
follows.

1. Make parties P1, · · · , Pn.

2. Select two integers i, j ← [1, . . . , n].

3. Select a integer t← [1, . . . , k].

4. Select two honest parties pi = Â and pj = B̂

5. Set a as a Â’s secret key, and A as a Â’s public
key.
Set B as a B̂’s public key.
Assign random static key pairs to other parties.

Note that, F guesses that M will select t-th session at
Pi as the test session. To simulate M’s environment, F
uses oracle OS with an input message TB̂ and creates
an Oracle OB̂ . and proceeds as follows:

Oracle OB̂ runs in the following way.

1. When invoked to generate an ephemeral key:

(a) input B.

(b) Choose s, e
R
∈ Zq.

(c) Compute Y = gsBe.

(d) return Y .

5



2. When invoked to generate a Schnorr signature on
an input message(P̂ , X):

(a) define e = H1(Y, P̂ ,X).
if H1(Y, P̂ ,X) was previously defined in dif-
ferent values e′ ̸= e, then define e = H1(Y, P̂ ,X)
once again instead of e’.

(b) return (Y, s).

S simulates all session activations at B̂ for M with the
help of OS and OB̂ . M makes queries except for B as
follows.

1. Payment(P̂1, P̂2):
P̂1 executes the Payment() activation of the pro-
tocol. However if the session being created is the
t-th session at Â , S checks whether P̂2 is B̂. If
so, F sets the ephemeral public key to X0 from
the input of F and doesn’t compute the session
key. Else, F aborts.

2. Respond(P̂1, P̂2, Y )
P̂1 executes the Respond() activation of the pro-
tocol. However if the session being created is the
t-th session at Â, F checks whether P̂2 is B̂. If
so, F sets the ephemeral public key to X0 from
the input of F, and completes the session without
computing the session key. Otherwise, F aborts.

3. Complete(P̂1, P̂2, X, Y )
P̂1 executes the Complete() activation of the pro-
tocol. However if the session being created is the
t-th session at Â, F completes the session without
computing the session key.

4. Session State Reveal (s):
F return to M the schnorr signature and the shared
secret Z. However, if F is t-th session at Â, F
aborts.

5. Session Key Reveal (s)
F return to M the session key of s. If s is t-th
session at Â, F aborts.

6. Corrupt(P̂ )
F gives M the private key of P̂ and state infor-
mation for current sessions and session keys at
P̂ . From the moment of corruption M takes full
control over P̂ . If M tries to corrupt Â or B̂, F
aborts.

7. H1(X, P̂1, Y ):
If the input value was previously asked in other
times, returns the same value.
If the input value was not previously asked, F
simulates a random oracle on it.

8. H2(Z, P̂1, P̂2, X, Y ):
If the input value was previously asked in other
times, returns the same value.
If the input value was not previously asked, F
simulates a random oracle on it.

If F asked H2 with P̂1 = Â, P̂2 = B̂, X = X0, Y = Y0

for some Z value, and DDH(X0A
d, Y0B

e) = 1 where
d = H1(X0, B̂, Y0) and e = H1(Y0, Â,X0), then F can
output

Z(= gx0y0g−x0ebg−ady0gabde).

In this case F can’t compute gx0y0 and g−xeb. Thus, F
is unable to output CDH(X0, B). To solve CDH(X0, B),
following the Forking Lemma[9] approach, F runs M
again in a same environment but F responds toH1(Y, P̂ ,X)

with a value e′
k
∈ Zq(e

′ ̸= e). If M succeeds in the sec-
ond run, F computes

Z ′(Y0B
−e′)da = gx0y0ge

′x0b.

and therefore obtains

CDH(X0, B) = (
Z

Z ′ )
1

e′−eBda.

It means that If M succeeds in forging Z, F solve GDH
problem. Therefore Pr[F ] ≤ ϵ, and if M selects t-th
session at Â and peer is B̂ as the test session, F per-
fectly simulates M’s environment except with negligible
probability.
The probability is at least 1

n2k . Therefore the success
probability of M is negrigible.

Pr(S) ≥
q−1
H1

(n)2k
Pr(M).

(The loss factor of q−1
H1

is from the Forking lemma.)

Case 3, 4: The simulation for M’s environment for
case 3 and 4 is the same as case 2. If the adversary
M wins the forging attack, its computes the 5 tuples
(Z, Â, B̂,X0, Y0). Therefore F takes the value

Z = g(x0−da)(y0−eb).

In this case B̂ has a session which uses Y0 as the ephemeral
public key. So OB must output (Y0, s) with Y0 =
gsBe′ where e′ = H1(Y, Â,X ′) or H1(Y, Â′, X). (Â′ ̸=
Â,X ′ ̸= X0, X is any given value, and e′ ̸= e). Then F
takes Z’ from the corresponding query to H2. It then
holds that

Z ′ = g(x0−da)(y0−e′b).

From Z and Z’, F obtains

CDH(X0, B) = (
Z

Z ′ )
1

e′−eBda.

Therefore the success probability of M is negrigible.

Pr[F ] ≥ 1

(n)2k
Pr[M ].

Note that, if we consider the case that cryptocur-
rency payment and AKE protocol share not only the
long term key but also the ephemeral key, we unable
to prove the security. We propose the Payment query
(instead of subsection 4.1),

6



1. Payment(Â, B̂): Â performs the following.

(a) Select x =
R
∈ Zq.

(b) Compute X = gx.

(c) Compute eTA = H(X,TA).

(d) Compute sTA = x− aeTA .

(e) Send X and signature (eTA , sTA) to B̂ with
identifier (Â, B̂,X).

In this case, while the forger F can simulate ephemeral
public key Y and d, F is unable to simulates sA and Z.
Therefore we are unable to prove the security when we
share the ephemeral key pairs.

5.1.2 Infeasibility of Key replication attack

Since this protocol uses a hash function to output a
session key as a random oracle, If input value is differ-
ence, hash function never return same value. There-
fore, as long as the session identifier (Â, B̂,X, Y ) is
hashed together with the shared secret value Z, the
success probability of adversary against Key replica-
tion attack is negrigble. This completes the proof of
Lemma 2. Together with Lemma 1, we complete the
proof of Theorem 1.

5.1.3 Other security properties

The AKE protocol is desirable to achieve following
two security properties in addition to the session key
security. So we prove the security that our protocol
resists to these attacks.

1. Resistance to Key-Compromise Imperson-
ation (KCI) attacks
Resistance to KCI attacks mean that, if the adversary
M gets the private key of Â, then M can’t distinguish
the session key of a complete session at Â from a ran-
dom value under conditions that the session peer is not
corrupted and the session and its matching session (If
its exist) are clean.

Theorem 2.
Under the GDH assumption, the protocol Π, with hash
functions modeled as random oracles, resists KCI at-
tacks..

proof.
We assume that the protocol Π is secure even if the
adversary M gets the secret key of Â. The only change
to the proof is that removes the corruption of Â from
the description of forger F as a reason for F to abort.
The proof remains valid since

1. In test session the ephemeral public key of Â is
given from the input to forger F. This means that
the adversary M is unable to select a ephemeral
public key freely.

2. M is unable to compute ZB(= g(sA)(sB)) even If
M gets the secret key of Â,

3. The above abort operation is never used in the
proof. Therefore, simulation is still perfect.

2. Resistance to Weak Perfect Forward Secrecy(PFS)
Forward secrecy means that the adversary is unable to
determine the shared secret of an eavesdropped AKE
session in the past between a pair of honest parties,
even if their private keys are leaked subsequently. And
the weak PFS ensures that the session key of the ses-
sion whose incoming and outgoing messages X, Y are
not chosen by the adversary enjoys forward secrecy.

Theorem 3.
Under the CDH assumption, the protocol Π, with hash
functions modeled as random oracles, provides weak
PFS.

proof.
Given an adversary M that breaks the weak PFS prop-
erty, we construct a CDH solver S as follows. In this
case S takes input (X0, Y0) ∈ G2, and works as follows.

1. Make parties P1, · · · , Pn.

2. Select two integers i, j ← [1, . . . , n].

3. Select a integer t← [1, . . . , k].

4. Select two honest parties pi = Â and pj = B̂

5. Set key pairs(secret key, public key) pi ← (a,A)
pj ← (b,B), and assign random static key pairs
to other parties.

S set t-th session of Â (Â, B̂,X0, Y0). If M select (Â, B̂,X0, Y0)
as a test session and distinguishes the session key of
the test session from random, then M must query H2

with (Z, Â, B̂,X0, Y0). Therefore, F can output Z (=
gx0y0g−x0ebgady0gabde), g−x0eb, gady0 and gabde. Then
F can compute CDH(X0, Y0). Therefore the success
probability of M is negrigible.

5.2 Cryptocurrency security

Theorem 4.
If the Schnorr signature is unforgeable, the protocol Π
with it’s hash functions modeled as a random oracle, is
a secure cryptocurrency payment .

lemma 3.
Under the DL assumption, after execute the protocol
Π, there is no feasible adversary that succeeds in gain-
ing an existential forgery of the Schnorr signature, un-
der an adaptively chosen message attack with nonneg-
ligible probability.

Proof.
Given the adversary M that succeeds in forging the
Schnorr signature under an adaptively chosen message
attack, we construct a DL solver S as follows. In this
case S takes input A ∈ G, and works as follows.

1. Make parties P1, · · · , Pn.

7



2. Select integer i← [1, . . . , n].

3. Select a honest party pi = Â.

4. Set A as a Â ’s public key. and assign random
static key pairs to other parties.

S simulates all the session activation at Â for M with
the help of the oracle OS and OB̂ , and other par-
ties session activations are freely set by M. To solve
DL(A), following the Forking Lemma[9] approach, S
runs M again in a same environment but S responds to

H(X,TÂ) with a value e′
R
∈ Zq(e

′ ̸= e). If M succeeds
in the second run, S computes

R = gs
′
Ae′ .

and therefore obtains

DL(A) =
s′ − s

e− e′

It means that If M succeeds in an adaptively chosen
message attack, S solves the DL problem. Therefore
Pr[S] ≤ ϵ, and if M selects Â, S perfectly simulates
M’s environment except with negligible probability.
The probability is at least 1

n . Therefore, the success
probability of M is negrigible.

Pr(S) ≥
q−1
H1

n
Pr(M).

(The loss factor of q−1
H1

is from the Forking lemma.)

6 Conclusions

In this paper, we consider end-to-end secure com-
munication between cryptocurrency users. When both
the AKE protocol and the cryptocurrency system share
the long term key pair, the signature simulation of
the cryptocurrency payment and the AKE protocol
are stand alone, so that we can perfectly simulate the
adversary’s environment. Therefore, we realize end-
to-end secure communication between cryptocurrency
users without extra long term keys in CK model. On
the other hands, we have to prepare the ephemeral key
pair for both sides, because when we share as well as
the ephemeral key, the signature simulation of the cryp-
tocurrency payment and the AKE protocol are unable
to separate, so that we can’t simulate the adversary’s
environment.

References

[1] Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Elec-
tronic Cash System Cryptology-Proceedings of
EUROCRYPT ’99, in: Lecture Notes in Comput.
Sci., vol. 1592, Springer-Verlag, 1999, pp. 295-310.

[2] Patrick McCorry, Siamak F. Shahandashti, Dylan
Clarke, Feng Hao, Authenticated Key Exchange
over Bitcoin

[3] Ran Canetti and Hugo Krawczyk. Analysis of key-
exchange protocols and their use for building se-
cure channels. In Birgit Pfitzmann, editor, Ad-
vances in Cryptology-EUROCRYPT 2001 volume
2045 of Lecture Notes in Computer Science, pages
453-474. Springer, May 2001.

[4] Brian A. LaMacchia, Kristin Lauter, and Anton
Mityagin. Stronger security of authenticated key
exchange. In Willy Susilo, Joseph K. Liu, and
Yi Mu, editors, ProvSec 2007: 1st International
Conference on Provable Security, volume 4784 of
Lecture Notes in Computer Science. pages 1-16.
Springer, November 2007.

[5] D. Hankerson, S. Vanstone, and A. Menezes.
Guide to Elliptic Curve Cryptography. Springer
Professional Computing. Springer, 2004.

[6] D. Pointcheval and J. Stern. Security proofs for
signature schemes. In Advances in Cryptology.
EURO- CRYPT96, pages 387-398. Springer, 1996.

[7] H. Krawczyk. HMQV: A High-Performance
Secure Dieffe-Hellman Protocol. In Advances
in Cryptology-CRYPTO 2015, pages 546-566.
Springer, 2005.

[8] Shijun Zhao and Qianying Zhang. sHMQV: An
Efficient Key Exchange Protocol for Power-limited
Devices.

[9] D. Pointcheval and J. Stern. Security proofs for
signature schemes. In Advances in Cryptology
- EURO- CRYPT ’96, pages 387-398. Springer,
1996.

[10] Shijun Zhao and Qianying Zhang. sHMQV: An
Efficient Key Exchange Protocol for Power-limited
Devices

8


