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Abstract. This paper presents efficient secure auction protocols for first
price auction and second price auction. Previous auction protocols are
based on a generally secure multi-party protocol called mix-and-match
protocol. However, the time complexity of the mix-and-match protocol is
large, although it can securely calculate any logical circuits. The proposed
protocols reduce the number of times the mix-and-match protocol is used
by replacing them with the Boneh-Goh-Nissim encryption, which enables
calculation of 2-DNF of encrypted data.

1 Introduction

1.1 Background

Recently, as the Internet has expanded, many researchers have become interested
in secure auction protocols and various schemes have been proposed to ensure the
safe transaction of sealed-bid auctions. A secure auction is a protocol in which
each player can find only the highest bid and its bidder (called the first price
auction) or the second highest bid and the first price bidder (called the second
price auction). A simple solution is to assume a trusted auctioneer. Bidders
encrypt their bids and send them to the auctioneer, and the auctioneer decrypts
them to decide the winner.

To remove the trusted auctioneer, some secure multi-party protocols have
been proposed. The common essential idea is the use of threshold cryptosystems,
where a private decryption key is shared by the players. Jakobsson and Juels
proposed a secure MPC protocol to evaluate a function comprising a logical
circuit, called mix-and-match [6]. As for a target function f and the circuit that
calculates f , Cf , all players evaluate each gate in Cf based on their encrypted
inputs and the evaluations of all the gates in turn lead to the evaluation of
f . Based on the mix-and-match protocol, we can easily find a secure auction
protocol by repeating the millionaires’ problem for two players. However, the
mix-and-match protocol requires two plaintext equality tests for a two-input one-
output gate. Furthermore, one plaintext equality test requires one distributed



decryption among players. Thus, it is important to reduce the number of gates
in Cf to achieve function f .

Kurosawa and Ogata suggested the ”bit-slice auction”, which is an auction
protocol that is more efficient than the one based on the millionaire’s problem
[8].

Boneh, Goh and Nissim suggested a public evaluation system for 2-DNF
formula based on an encryption of Boolean variables [3]. Their protocol is based
on Pallier’s scheme [12], so it has additive homomorphism in addition to the
bilinear map, which allows one multiplication on encrypted values. As a result,
this property allows the evaluation of multivariate polynomials with the total of
degree two on encrypted values.

In this paper, we introduce bit-slice auction protocols based on the public
evaluation of the 2-DNF formula. For the first price auction, the protocol uses no
mix-and-match gates. For the second price auction, we use the mix-and-match
protocol fewer times than that suggested in [8].

1.2 Related works

As related works, there are many auction protocols, however, they have problems
such as those described hereafter. The first secure auction scheme proposed by
Franklin and Reiter [5] does not provide full privacy, since at the end of an
auction players can know the other players’ bids. Naor, Pinkas and Sumner
achieved a secure second price auction by combining Yao’s secure computation
with oblivious transfer assuming two types of auctioneers [10]. However, the
cost of the bidder communication is high because it proceeds bit by bit using
the oblivious transfer protocol. Juels and Szydlo improved the efficiency and
security of this scheme with two types of auctioneers through verifiable proxy
oblivious transfer [7], which still has a security problem in which if both types
of auctioneers collaborate they can retrieve all bids.

Lipmaa, Asokan and Niemi proposed an efficient M + 1st secure auction
scheme [9]. The M+1st price auction is a type of sealed-bid auction for selling M
units of a single kind of goods, and the M +1st highest price is the winning price.
M bidders who bid higher prices than the winning price are winning bidders,
and each winning bidder buys one unit of the goods at the M + 1st winning
price. In this scheme, the trusted auction authority can know the bid statistics.
Abe and Suzuki suggested a secure auction scheme for the M +1st auction based
on homomorphic encryption [1]. However in their scheme, a player’s bid is not
a binary expression. So, its time complexity is O(m2k) for a m-player and k-bit
bidding price auction. Tamura, Shiotsuki and Miyaji proposed an efficient proxy-
auction [14]. This scheme only considers the comparison between two sealed bids,
the current highest bid and a new bid. However, this scheme does not consider
multiple players because of the property of the proxy-auction.



1.3 Our result

In this paper, we introduce bit-slice auction protocols based on the public eval-
uation of the 2-DNF formula. For the first price auction, the protocol uses no
mix-and-match gates. For the second price auction, we use the mix-and-match
protocol fewer times than that suggested in [8].

2 Preliminaries

2.1 The model of auctions and outline of auction protocols

This model involves n players, denoted by P1, P2, ..., Pn and assumes that there
exists a public board. The players agree in advance on the presentation of the
target function, f as a circuit Cf . The aim of the protocol is for players to
compute f(B1, ..., Bn) without revealing any additional information. Its outline
is as follows.

1. Input stage: Each Pi(1 ≤ i ≤ n) computes ciphertexts of the bits of Bi

and broadcasts them and proves that the ciphertext represents 0 or 1 by
using the zero-knowledge proof technique in [3].

2. Mix and Match stage: The players blindly evaluates each gate, Gj , in
order.

3. Output stage: After evaluating the last gate GN , the players obtain ON ,
a ciphertext encrypting f(B1, ..., Bn). They jointly decrypt this ciphertext
value to reveal the output of function f .

Requirements for the encryption function Let E be a public-key proba-
bilistic encryption function. We denote the set of encryptions for a plaintext m
by E(m) and a particular encryption of m by c ∈ E(m) .

Function E must satisfy the following properties.

1.Homomorphic property There exist polynomial time computable opera-
tions, −1 and ⊗, as follows. For a large prime q,
1. If c ∈ E(m), then c−1 ∈ E(−m mod q).
2. If c1 ∈ E(m1) and c2 ∈ E(m2), then c1 ⊗ c2 ∈ E(m1 + m2 mod q).

For a positive integer a, define
a · e = c ⊗ c ⊗ · · · ⊗ c︸ ︷︷ ︸

a

.

2.Random re-encryption Given c ∈ E(m), there is a probabilistic re-encryption
algorithm that outputs c′ ∈ E(m), where c′ is uniformly distributed over
E(m).

3.Threshold decryption For a given ciphertext c ∈ E(m), any t out of n
players can decrypt c along with a zero-knowledge proof of the correctness.
However, any t-1 out of n players cannot decrypt c.



MIX protocol The MIX protocol [4] takes a list of ciphertexts, (ξ1, ...., ξL), and
outputs a permuted and re-encrypted list of the ciphertexts (ξ′1, ..., ξ

′
L) without

revealing the relationship between (ξ1, ..., ξL) and (ξ′1, ..., ξ
′
L), where ξi or ξ′i can

be a single ciphertext c, or a list of l ciphertexts, (c1, ..., cl), for some l > 1.
For all players to verity the validity of (ξ′1, ..., ξ

′
L), we use the universal verifiable

MIX net protocol described in [13].

Plaintext equality test Given two ciphertexts c1 ∈ E(v1) and c2 ∈ E(v2),
this protocol checks if v1 = v2. Let c0 = c1 ⊗ c−1

2 .

1. (Step 1) For each player Pi (where i = 1,...,n):
Pi chooses a random element ai ∈ Z∗

q and computes zi = ai·c0. He broadcasts
zi and proves the validity of zi in zero-knowledge.

2. (Step 2) Let z = z1 ⊗ z2 ⊗ · · · ⊗ zn. The players jointly decrypt z using
threshold verifiable decryption and obtain plaintext v. Then it holds that

v =
{

0 if v1 = v2

random otherwise

Mix and Match Stage For each logical gate, G(x1, x2), of a given circuit, n
players jointly computes E(G(x1, x2)) from c1 ∈ E(x1) and c2 ∈ E(x2) keeping
x1 and x2 secret. For simplicity, we show the mix-and-match stage for AND gate.

1. n players first consider the standard encryption of each entry in the table
shown below.

2. By applying a MIX protocol to the four rows of the table, n players jointly
compute blinded and permuted rows of the table. Let the ith row be (a′

i, b
′
i, c

′
i)

for i = 1,...,4.
3. n players next jointly find the row i such that the plaintext of c1 is equal to

that of a′
i and the plaintext of c2 is equal to that of b′i by using the plaintext

equality test protocol.
4. For the row i, it holds that c′i ∈ E(x1 ∧ x2).

Table 1. Mix-and-match table for AND

x1 x2 x1 ∧ x2

a′
1 ∈ E(0) b′1 ∈ E(0) c′1 ∈ E(0)

a′
2 ∈ E(0) b′2 ∈ E(1) c′2 ∈ E(0)

a′
3 ∈ E(1) b′3 ∈ E(0) c′3 ∈ E(0)

a′
4 ∈ E(1) b′4 ∈ E(1) c′4 ∈ E(1)



2.2 Bit-Slice Auction Circuit

We introduce an efficient auction circuit called the bit-slice auction circuit de-
scribed in [6]. In this scheme, we assume only one player bids the highest bidding
price, so we do not consider a case two more players become the winners. Sup-
pose that Bmax = (b(k−1)

max , ..., b
(0)
max)2 is the highest bidding price and a bid of a

player i is Bi = (b(k−1)
i , ..., b

(0)
i )2, where ()2 is the binary expression. Then the

proposed circuit first determines b
(k−1)
max by evaluating the most significant bits of

all the bids. It next determines b
(k−2)
max by looking at the second most significant

bits of all the bids, and so on.
For two m-dimensional binary vectors X = (x1, ..., xm) and Y = (y1, ..., ym),

X ∧ Y = (x1 ∧ y1, ..., xm ∧ ym)

Let Dj be the highest price when considering the upper j bits of the bids.
That is,

D1 = (b(k−1)
max , 0, ..., 0)2

D2 = (b(k−1)
max , b

(k−2)
max , 0, ..., 0)2

· · ·
Dk = (b(k−1)

max , ..., b
(0)
max)2

In the j-th round, we find b
(k−j)
max and eliminate a player Pi such that his bid

satisfies Bi < Dj . For example, in the case of j = 1, a player i is eliminated
if his bid Bi < D1. By repeating this operation for j = 1 to k, at the end the
remaining bidder is the winner.

For this purpose, we update W = (w1, ..., wm) such that

wi =
{

1 if Bi ≥ Dj

0 otherwise

for j = 1 to k. The circuit is obtained by implementing the following algorithm.
For given m bids, B1, ..., Bm, Vj is defined as

Vi = (b(j)
1 , ..., b

(j)
m )

for j = 0,...,k−1, that is, Vj is the vector consisting of the (j +1)th lowest bit of
each bid. Let W = (w1, ..., wm), where each wj = 1. For j = k− 1 to 0, perform
the following.
(Step 1) For W = (w1, ..., wm), let

Sj = W ∧ Vj

= (w1 ∧ b
(j)
1 , ..., wm ∧ b

(j)
m )

b
(j)
max = (w1 ∧ b

(j)
1 ) ∨ · · · ∨ (wm ∧ b

(j)
m ) .



(Step 2) If b
(j)
max = 1, then let W = Sj .

Then the highest price is obtained as Bmax = (b(k−1)
max , ..., b

(0)
max)2. Let the final

W be (w1, ..., wm). Then Pi is the winner if and only if wi = 1. We summarize
the algorithm as the following theorem.

Theorem 1 [8] In the bit-slice auction above,
- Bmax is the highest bidding price.
- For the final W = (w1, ..., wm), Pi is a winner if and only if wi = 1 and Pi is
the only player who bids the highest price Bmax.

2.3 Evaluating 2-DNF formulas on ciphertexts

Given encrypted Boolean variables x1, ..., xn ∈ {0, 1}, a mechanism for public
evaluation of a 2-DNF formula was suggested in [3]. They presented a homomor-
phic public key encryption scheme based on finite groups of composite order that
supports a bilinear map. In addition, the bilinear map allows for one multiplica-
tion on encrypted values. As a result, their system supports arbitrary additions
and one multiplication on encrypted data. This property in turn allows the eval-
uation of multivariate polynomials of a total degree of two on encrypted values.

Bilinear groups Their construction makes use of certain finite groups of com-
posite order that supports a bilinear map. We use the following notation.

1. G and G1 are two (multiplicative) cyclic groups of finite order n.
2. g is a generator of G.
3. e is a bilinear map e : G × G → G1.

Subgroup decision assumption We define algorithm G such that given secu-
rity parameter τ ∈ Z+ outputs a tuple
(q1, q2, G, G1, e) where G, G1 are groups of order n = q1q2 and e : G × G → G1

is a bilinear map. On input τ , algorithm G works as indicated below,

1. Generate two random τ -bit primes, q1 and q2 and set n = q1q2 ∈ Z.
2. Generate a bilinear group G of order n as described above. Let g be a gen-

erator of G and e : G × G → G1 be the bilinear map.
3. Output (q1, q2, G, G1, e).

We note that the group action in G and G1 as well as the bilinear map can
be computed in polynomial time.

Let τ ∈ Z+ and let (q1, q2, G, G1, e) be a tuple produced by G where n = q1q2.
Consider the following problem. Given (n, G, G1, e) and an element x ∈ G, out-
put ’1’ if the order of x is q1 and output ’0’ otherwise, that is, without knowing
the factorization of the group order n, decide if an element x is in a subgroup of
G. We refer to this problem as the subgroup decision problem.



Homomorphic public key system We now describe the proposed public key
system which resembles the Pallier [12] and the Okamoto-Uchiyama encryption
schemes [11]. We describe the three algorithms comprising the system.

1.KeyGen Given a security parameter τ ∈ Z, run G to obtain a tuple (q1, q2, G, G1, e).
Let n = q1q2. Select two random generators, g and u

R←− G and set h = uq2 .
Then h is a random generator of the subgroup of G of order q1. The public
key is PK = (n, G, G1, e, g, h). The private key is SK = q1.

2.Encrypt(PK,M) We assume that the message space consists of integers in
set {0, 1, ..., T} with T < q2. We encrypt the binary representation of bids
in our main application, in the case T = 1. To encrypt a message m using
public key PK, select a random number r ∈ {0, 1, ..., n − 1} and compute

C = gmhr ∈ G.

Output C as the ciphertext.
3.Decrypt(SK,C) To decrypt a ciphertext C using the private key SK = q1,

observe that Cq1 = (gmhr)q1 = (gq1)m. Let ĝ = gq1 . To recover m, it suffices
to compute the discrete log of Cq1 base ĝ.

Homomorphic properties The system is clearly additively homomorphic.
Let (n, G, G1, e, g, h) be a public key. Given encryptions C1 and C2 ∈ G1 of
messages m1 and m2 ∈ {0, 1, ..., T} respectively, anyone can create a uniformly
distributed encryption of m1+m2 mod n by computing the product C = C1C2h

r

for a random number r ∈ {0, 1, ..., n − 1}. More importantly, anyone can mul-
tiply two encrypted messages once using the bilinear map. Set g1 = e(g, g) and
h1 = e(g, h). Then g1 is of order n and h1 is of order q1. Also, write h = gαq2 for
some (unknown)α ∈ Z. Suppose we are given two ciphertexts C1 = gm1hr1 ∈ G
and C2 = gm2hr2 ∈ G. To build an encryption of product m1 · m2 mod n given
only C1 and C2, 1) select random r ∈ Zn, and 2) set C = e(C1, C2)hr

1 ∈ G1. Then

C = e(C1, C2)hr
1 = e(gm1hr1 , gm2hr2)hr

1

= gm1m2
1 hm1r2+r2m1+q2r1r2α+r

1 = gm1m2
1 hr′

1 ∈ G1

where r′ = m1r2 +r2m1 +q2r1r2α+r is distributed uniformly in Zn as required.
Thus, C is a uniformly distributed encryption of m1m2 mod n, but in the group
G1 rather than G (this is why we allow for just one multiplication). We note that
the system is still additively homomorphic in G1. For simplicity, in this paper
we denote an encryption of message m in G as EG(m) and one in G1 as EG1(m).

2.4 Key sharing

In [2], efficient protocols are presented for a number of players to generate jointly
RSA modulus N = pq where p and q are prime, and each player retains a share
of N . In this protocol, none of the players can know the factorization of N . They



then show how the players can proceed to compute a public exponent e and the
shares of the corresponding private exponent. At the end of the computation
the players are convinced that N is a product of two large primes by using zero-
knowledge proof. Their protocol was based on the threshold decryption that m
out of m players can decrypt the secret. The cost of key generation for the shared
RSA private key is approximately 11 times greater than that for simple RSA
key generation. However the cost for computation is still practical. We use this
protocol to share private keys among auction managers.

3 New efficient auction protocol

In this section, we show bit-slice auction protocols based on the evaluation of
multivariate polynomials with the total degree of two on encrypted values. For
the first price auction, we compose a secure auction protocol on only 2-DNF
formula on encrypted bits. (We do not need to use the mix-and-match protocol
anymore). On the other hand, for the second price auction, we still need to use
the mix-and-match protocol for several times.

3.1 First price auction using 2-DNF scheme

We assume n players, P1, ..., Pn and a set of auction managers, AM . The players
bid their encrypted prices, and through the protocol they publish encrypted flags
whether they are still in the auction. The AM jointly decrypts the results of the
protocol. Players find the highest price through the protocol and the winner by
decrypting the results.

Setting AM jointly generates and shares private keys among themselves using
the technique described in [2].

Bidding Phase Each player Pi computes a ciphertext of his bidding price, Bi,
as

ENCi = (ci,k−1, ...., ci,0)

where ci,j ∈ EG(b(j)
i ), and publishes ENCi on the bulletin board. He also proves

in zero-knowledge that b
(j)
i = 0 or 1 by using the technique described in [3].

Opening Phase Suppose that c1 = gb1hr1 ∈ EG(b1) and c2 = gb2hr2 ∈ EG(b2),
where b1, b2 are binary and r1, r2 ∈ Z∗

n are random numbers. We define two
polynomial time computable operations Mul and ⊗ by applying a 2DNF formula
for AND, OR respectively.

Mul(c1, c2) = e(c1, c2) = e(gb1hr1 , gb2hr2) ∈ EG1(b1 ∧ b2)
c1 ⊗ c2 = gb1hr1 · gb2hr2 = gb1+b2hr1+r2 ∈ EG(b1 + b2)



by applying a 2DNF formula for AND.
The AM generates W = (w1, ..., wm), where each wj =1, and encrypts them as
W̃ = (w̃1, ..., w̃m). The AM shows that W̃ is the encryption of (1,...,1) with the
verification protocols.
(Step 1) For j = k -1 to 0, perform the following.
(Step 1-a) For W̃ = (w̃1, ..., w̃m), AM computes si,j = Mul(w̃i, ci,j) for each
player i, and

Sj = (Mul(w̃1, c1,j), ...,Mul(w̃m, cm,j))
hj = Mul(w̃1, c1,j) ⊗ · · · ⊗ Mul(w̃m, cm,j)

(Step 1-b) The AM takes a plaintext equality test regarding whether hj is an
encryption of 0. If hj is an encryption of 0, AM publishes 0 as the value of b

(j)
max

and proves it with the verification protocols, otherwise, AM publishes 1 as the
value of b

(j)
max.

(Step 1-c) If b
(j)
max = 1, then each player creates a new encryption w̃i which has

the same plaintext value of si,j , otherwise he uses w̃i for the next bit. In addi-
tion, the player shows the validity of computation with zero-knowledge proof.
(Step 2) For the final W̃ = (w̃1, ..., w̃m), AM decrypts each w̃i with the verifi-
cation protocols and obtains plaintext wi.
The highest price is obtained as
Bmax = (b(k−1)

max , ..., b
(0)
max)2. Pi is a winner if and only if wi = 1.

3.2 Second price auction using 2-DNF scheme and mix-and-match
protocol

In the second price auction, the information that players can find is the second
highest price and the bidder of the highest price. To maintain secrecy of the
highest bid through the protocol, we need to use the mix-and-match protocol.
However, we can reduce the number of times we use it. As a result, the proposed
protocol is more efficient than that in [8]. Here, we define three types of new
tables, Selectm, MAP1 and MAP2 for the second price auction. In the proposed
protocol, the MAP1 and MAP2 tables are created among AM before an auction.
On the other hand, Selectm is created through the protocol corresponding to the
players’ inputs. The AM jointly computes values in the mix-and-match table for
distributed decryption of plaintext equality test. Table Selectm is also used for
the second price auction protocol in [8]; MAP1 and MAP2 are new tables that
we propose. Given a message m, MAP1 and MAP2 are tables for mapping an
encrypted value a1 ∈ EG1(m) (which is an output of a computation with one
multiplication) to a2 ∈ EG(m).

Table Selectm has 2k + 1 input bits and k output bits as follows.

Selectm(b, x(m−1), ..., x(0), y(m−1), ..., y(0))

=
{

(x(m−1), ..., x(0)) if b = 1
(y(m−1), ..., y(0)) otherwise



Table 2. Table for MAP1

x1 x2

a1 ∈ EG1(0) b1 ∈ EG(0)

a2 ∈ EG1(1) b2 ∈ EG(1)

For two encrypted input vectors (x(k−1), ..., x(0)) and (y(k−1), ..., y(0)), b is an
encryption of the check bit that selects which vector to output, (x(k−1), ..., x(0))
or (y(k−1), ..., y(0)). For secure computation, the AM re-encrypts the output
vector. In the proposed protocol, the Selectm table is created through the auc-
tion to update W corresponding to an input value E(bj). The function of ta-
ble MAP1, shown in Table 2, is a mapping x1 ∈ {EG1(0), EG1(1)} → x2 ∈
{EG(0), EG(1)}. The table MAP2, shown in Table 3, is the one for mapping
x1 ∈ {EG1(0), EG1(1), ..., EG1(m)} → x2 ∈ {EG(0), EG(1)}. These tables can
be constructed using the mix-and-match protocol because the Boneh-Goh-Nissim
encryption has homomorphic properties. The setting and bidding phases are the
same as those for the first price auction, so we start from the opening phase.

Opening phase Let W̃ = (w̃1, .., w̃m), where each w̃j ∈ EG(1) shown above.
(Step 1) For j = k -1 to 0, perform the following.
(Step 1-a) For W̃ = (w̃1, ..., w̃m), AM computes si,j = Mul(w̃i, ei,j) for each
player i, and

Sj = (Mul(w̃1, c1,j), ...,Mul(w̃m, cm,j))
hj = Mul(w̃1, c1,j) ⊗ · · · ⊗ Mul(w̃m, cm,j)

(Step 1-b) The AM uses table MAP1 for si,j for each i and finds the values
of s̃i,j . Let S̃j = (s̃1,j , ..., s̃m,j). The AM also uses the table MAP2 for hj as an
input value. By using this table, AM retrieves E(bj) ∈ EG(0) if hj is a ciphertext
of 1, otherwise he retrieves E(bj) ∈ EG(1).
(Step 1-c) AM creates the table Selectm as input values (E(bj), S̃j , W̃ ).
The AM executes W̃ = Selectm(E(bj), S̃j , W̃ ), that is, if E(bj) is the encryption
of 1, W̃ is updated as S̃j .
(Step 2) For the final W̃ = (w̃1, ..., w̃m), AM decrypts each w̃i with verification
protocols and obtains the plaintext wi. Pi is the winner if and only if wi =
1. The AM remove the player who bids the highest price and run the first
price auction protocol again. The second highest price is obtained as Bmax =
(b(k−1)

max , ..., b
(0)
max)2.

Verification protocols
Verification protocols are the protocols for players to confirm that AM decrypts
the ciphertext correctly. By using the protocols, each player can verify the results
of the auction are correct. We denote b as a palintext and C as a BGN encryption
of b (C = gbhr), where g, h and r are elements used in BGN scheme and f =



Table 3. Table for MAP2

x1 x2

a1 ∈ EG1(0) b1 ∈ EG(0)

a2 ∈ EG1(1) b2 ∈ EG(1)

· · · bi ∈ EG(1)

am+1 ∈ EG1(m) bm+1 ∈ EG(1)

C(gb)−1. Before a player verifies whether b is the plaintext of C, the player
must prove that a challenge ciphertext C ′ = gxfr is created by himself with
zero-knowledge proof that he has the value of x.

1. A player proves that he has random element x ∈ Z∗
n with zero-knowledge

proof.
2. The player computes f = C(gb)−1 from the published values, h, g and b,

and select a random integer r ∈ Z∗
n. He sends C ′ = gxfr to AM .

3. The AM decrypts C ′ and sends value x′ to the player.
4. The player verifies whether x = x′. AM can decrypt C ′ correctly only if

order(f) = q1, which means that the AM correctly decrypts C and publishes
b as the plaintext of C.

3.3 Security

1. Privacy for bidding prices
Each player can not retrieve any information except the winner and the
highest price or the second highest price (the first price auction and second
price auction respectively). An auction scheme is secure if there is no polyno-
mial time adversary that breaks privacy with non-negligible advantage ε(τ).
We prove that the privacy for bidding prices in the proposed auction pro-
tocols under the assumption that BGN encryption with the mix-and-match
oracle is semantically secure. Given a message m, the mix-and-match or-
acle receives an encrypted value x1 ∈ EG1(m) and returns the encrypted
value x2 ∈ EG(m) according to the mix-and-match table shown in Table
3. (which has the same function as MAP2). Given a message m and the
ciphertext x1 ∈ EG1(m), the function of mix-and-match table is to map
x1 ∈ EG1(m) → x2 ∈ EG(m). The range of the input value is supposed to
be {0,1,...,m} and the range of the output is {0,1}. We do not consider cases
where the input values are out of the range. Using this mix-and-match ora-
cle, an adversary can compute any logical function without the limit where
BGN encryption scheme can use only one multiplication on encrypted values.
So, an adversary can calculate Selectm(b, x(m−1), ..., x(0), y(m−1), ..., y(0)) =
b(x(m−1), ..., x(0)) + (1 − b)(y(m−1), ..., y(0)) with an additional polynomial
computation. MAP1 can also be computed if the range of the input value
is restricted in {0,1}. Here, we define two semantic secure games and ad-
vantages for BGN encryption scheme and the proposed auction protocols.



(PK, SK) ← KeyGen
(m0, m1, s) ← Ao1

1 (PK)
b ← {0, 1}

c ← Encrypt(PK, mb)
b′ ← Ao1

2 (c, s)
return 1 iff b = b′

Fig. 1. EXPTA,Π

We also show that if there is adversary B that breaks the proposed auction
protocol, we can compose adversary A that breaks the semantic security of
the BGN encryption with the mix-and-match oracle by using B..

Definition 1
Let Π = (KeyGen,Encrypt,Decrypt) be a BGN encryption scheme, and
let AO1 = (AO1

1 , AO1
2 ), be a probabilistic polynomial-time algorithm, that can

use the mix-and-match oracle O1.

BGN-Adv(τ) = Pr[EXPTA,Π(τ) ⇒ 1] − 1/2

where, EXPTA,Π is a semantic security game of the BGN encryption scheme
with the mix-and-match oracle shown in Fig. 1.
We then define an adversary B for an auction protocol and an advantage for
B.

Definition 2
Let Π = (KeyGen,Encrypt,Decrypt) be a BGN encryption scheme, and
let B be two probabilistic polynomial-time algorithm B1 and B2.

Auction-Adv(τ) = Pr[EXPTB,Π = 1] − 1/2

where EXPTB,Π is a semantic security game of the privacy of the auction
protocol shown in Fig. 2.
First of all, B1 generates k-bit integers, b1, b2, ..., bm−1 as plaintexts of bid-
ding prices for player 1 to m−1, and two challenge k-bit integers as bm0 , bm1

where bm0 and bm1 are the same bits except for i-th bit mi
0 and mi

1. We as-
sume bm0 and bm1 are not the first price bid in a first price auction and the
second highest price in a second price auction.Then the auction is executed
with (Encrypt(PK, b1), Encrypt(PK, b2), ..., Encrypt(PK, bm−1), Encrypt(PK, bmb

))
as the players’ encrypted bidding prices where b

r←− {0,1}. After the auction,
B2 outputs b’ ∈ {0,1} as a guess for b. B wins if b = b’.

Theorem 2 The privacy of the auction protocols is secure under the as-
sumption that the BGN encryption is semantically secure with a mix-and-
match oracle.



(PK, SK) ← KeyGen
(b1, b2, ..., bm−1, bm0, bm1, s) ← B1(PK)

b ← {0, 1}
c ← (Encrypt(PK, b1), Encrypt(PK, b2), ..., Encrypt(PK, bm−1), Encrypt(PK, bmb))

execute auction protocols using
c as players′ bids

b′ ← B2(c, s)
return 1 iff b = b′

Fig. 2. EXPTB,Π

We show if there is adversary B that breaks the security of the proposed
auction protocol, we can compose adversary A that breaks the semantic
security of the BGN encryption with the mix-and-match oracle. A receives
two challenge k-bit integers as bm0 and bm1 from B and then A uses mi

0

and mi
1 as challenge bits for the challenger of the BGN encryption. Then A

receives Encrypt(PK,mi
b) and executes a secure auction protocol with the

mix-and-match table. In the auction, when decrypted values are needed, A
can calculate them since he knows all the input values, b1, b2, ..., bm−1 except
the i-th bit of bmb

. Through the protocol, B observes the calculation of the
encrypted bids and the results of the auction. After the auction, B outputs
b′, which is the guess for b. A outputs b′, which is the same guess with
B’s output for bmb

. If B can break the privacy of the bidding prices in the
proposed auction protocol with advantage ε(τ), A can break the semantic
security of the BGN encryption with the same advantage.

2. Correctness
For correct players’ inputs, the protocol outputs the correct winner and price.
From Theorem 1 introduced in Section 1.4, the bit-slice auction protocol
obviously satisfies the correctness.

3. Verification of the evaluation
To verify whether the protocol works, players need to validate whether the
AM decrypts the evaluations of the circuit on ciphertexts through the pro-
tocol. We use the verification protocols introduced above so that each player
can verify whether the protocol is computed correctly.

4 Comparison of auction protocols

4.1 First price auction

The protocol proposed in [8] requires mk AND computations to calculate Sj =
(Mul(w̃1, c1,j), ...,Mul(w̃m, cm,j)) for j = k -1 to 0 and k plaintext equality
tests when it checks whether b

(i)
max is the ciphertext of 0. One AND computation

requires two plaintext equality tests. So, the total number of plaintext equality
tests is 2mk + k. On the other hand, we do not use mix-and-match protocols
anymore. The proposed protocol is based on only a 2-DNF scheme. So, Sj can be



AND PET Total PET(approx.)

[KO02] mk k 2mk + k

Proposed 0 k k
Table 4. Number of PET in the first price auction.

AND OR Selectm MAP1 MAP2 PET Total PET(approx.)

[KO02] (2m − 1)k (m − 2)k k 0 0 0 6mk − 5k

Proposed 0 0 k mk k k 3/2mk + 3k
Table 5. Number of PET in the second price auction.

computed by addition and multiplication of ciphertexts. It requires only k plain-
text equality tests to check b

(i)
max. A comparison between the proposed protocol

and that in [8] is shown in Table 4.

4.2 Second price auction

In the second price auction protocol, the protocol in [8] requires (2m−1)k AND,
(m− 2)k OR and k Selectm gates. One OR gate requires two plaintext equality
tests. Selectm requires one test to check whether b is the ciphertext of 1, so in
total approximately 6mk − 3k plaintext equality tests are required. Conversely,
the proposed protocol requires MAP1 mk times and MAP2 k times. MAP1

requires one plaintext equality test which uses to check whether input value is a
ciphertext of 0 or 1. The range of input value in the table MAP2 is m+1 (from 0
to m) and use one plaintext equality test for each column in the mix-and-match
table. MAP2 requires approximately m/2+1 times on average. It also requires
k plaintext equality tests to decide the second highest price among the rest of
player except the winner. In total, the calculation cost of proposed protocols
is 3/2mk + 3k. A comparison between the proposed protocol and that in [8] is
shown in Table 5. In the second price auction we can reduce the number of times
when the plaintext equality test is executed.

5 Conclusion

We introduced new efficient auction protocols based on the BGN encryption and
showed that they are approximately two fold more efficient than that proposed
in [8]. As a topic of future work, we will try to compose a secure auction protocol
without using the mix-and-match protocol.
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