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Abstract. In this paper, we show a concurrent oblivious transfer pro-
tocol in super-polynomial-simulation (SPS) security. Our protocol does
not require any setup and does not assume any independence among
the inputs. In addition, our protocol is efficient since it does not use
any inefficient primitives such as general zero-knowledge proofs for all
NP statements. This is the first concurrent oblivious transfer protocol
that achieves both of these properties simultaneously. The security of our
protocol is based on the decisional Diffie-Hellman (DDH) assumption.

1 Introduction

1.1 Background

Oblivious Transfer. Oblivious transfer protocols [31] have been extensively
studied in cryptography due to their usefulness in protocol constructions. Obliv-
ious transfer protocols4 enable the receiver to receive one of two values from
the sender. The sender cannot know which value the receiver received, whereas
the receiver can learn only one value and cannot learn anything about the other
value. Numerous protocols have been constructed using oblivious transfer pro-
tocols. In fact, oblivious transfer is complete for secure computation, i.e., we can
compute any function securely given an oblivious transfer protocol [17,18].

Oblivious transfer protocols against malicious adversaries can be obtained
by transforming oblivious transfer protocols against semi-honest adversaries to
protocols against malicious adversaries using the protocol compiler of Goldreich
et al. [13]. However, the protocols obtained in this way are highly inefficient since
they use general zero-knowledge proofs for NP statements. As a result, the task
of constructing efficient oblivious transfer protocols, which are indispensable for
practical purposes, has attracted much attention. Efficient “fully-simulatable”5

4 In this paper, we consider 1-out-of-2 oblivious transfer protocols.
5 If we consider the half-simulation definition [24], there exist many highly-efficient

protocols, e.g., [1, 23].



oblivious transfer protocols are shown in [15, 19, 20]. In addition, there exist
black-box transformations, which do not use general zero-knowledge proofs, from
semi-honest oblivious transfer to malicious oblivious transfer [8, 16,17,22,27].

Concurrent Security. All of the above protocols achieve only stand-alone
security, i.e., they are secure only when a single instance of the protocols is
executed at a time. More realistic and desirable security is concurrent security,
which guarantees that the protocol remains secure even when several instances
of the protocol are executed at the same time in an arbitrary schedule.

Unfortunately, in the standard model (with adaptively-chosen inputs and
no trusted setup), we cannot construct concurrent oblivious transfer protocols
with black-box simulation [21]. As a result, existent concurrent oblivious transfer
protocols have been constructed in other models. For example, as noted in [21],
the concurrent oblivious transfer of [11] circumvents the impossibility result by
considering a model where all the inputs in all the executions are independent of
each other. Universally composable (UC) oblivious transfer protocols [9, 14, 28]
achieve UC security, which implies concurrent security, in models with setups
such as common reference strings (CRS). Although these models are reasonable
in some situations, it is desirable to achieve concurrent security in the standard
model.

Super-Polynomial-Simulation Security. Super-polynomial-simulation (SPS)
security [25,29] enables us to achieve concurrent security in the standard model.
SPS security is a relaxed notion of security in the simulation paradigm. Before
explaining further about SPS security, we introduce the simulation paradigm.

In the simulation paradigm, we define the real world and the ideal world.
In the real world, the parties carry out a task (or functionality) by executing a
protocol. In the ideal world, the parties carry out the task by interacting with an
incorruptible trusted third party called the ideal functionality. Then, the protocol
is said to be secure if for any adversary who can perform some attacks in the real
world there exists an adversary (or simulator) who can perform essentially the
same attacks in the ideal world. In the case of oblivious transfer, we define the
ideal functionality as follows. The ideal functionality F receives m0 and m1 from
the sender and σ ∈ {0, 1} from the receiver. Then, F sends mσ to the receiver.
Clearly, F carries out the task in a perfectly-secure fashion. Then, the security
in the simulation paradigm means that, if some attacks can be performed on the
protocol by the adversary, essentially the same attacks can be performed even
on F by the simulator.

In standard security definitions of the simulation paradigm, we restrict the
running time of the simulator to polynomial time. In SPS security, we relax this
security definition by allowing the simulator to run in super-polynomial time.
Thus, SPS security guarantees that, if the adversary can perform some attacks in
the real world, the simulator can perform essentially the same attacks in super-
polynomial time. Although SPS security is a relaxed notion of security, it guar-
antees sufficient security if the ideal functionality is information-theoretically se-



cure, i.e., if the ideal functionality is secure against computationally-unbounded
adversaries. Clearly, the above oblivious transfer ideal functionality is information-
theoretically secure.

SPS security was introduced to construct constant-round concurrent zero-
knowledge proofs [25, 26]. SPS security was also used in the UC framework,
and it was shown that there exist protocols that compute any functionality in
the standard model [2, 6, 12, 30]. Hence, using these protocols, we can construct
concurrent oblivious transfer protocols in the standard model. However, the pro-
tocols obtained in this way are inefficient, since they use general zero-knowledge
proofs for all NP statements. Therefore, for practical purposes, we believe that
more work is needed on efficient concurrent oblivious transfer protocols in the
standard model.

1.2 Our Result

In this paper, we present a concurrently-secure oblivious transfer protocol secure
under SPS security. Our protocol does not require any setup and does not assume
any independence among the inputs. In addition, our protocol is efficient since
it does not use any inefficient primitives such as general zero-knowledge proofs
for all NP statements. To the best of our knowledge, our protocol is the first
concurrent oblivious transfer protocol that achieves both of these properties
simultaneously. The security of our protocol is based on the decisional Diffie-
Hellman (DDH) assumption.

Our Technique. Here, we give a brief overview of our protocol.
We construct our protocol and prove its security in the UC-SPS framework

[12,30]. The UC-SPS framework is the same as the UC framework [3] except that
in the UC-SPS framework we allow the simulator to run in super-polynomial
time.

Our protocol is based on the UC oblivious transfer of [28], which is secure
in the CRS model. In the protocol of [28], the CRS is (g0, h0, g1, h1) ∈ G4 for
cyclic group G. The protocol of [28] has the following properties.

– If (g0, h0, g1, h1) is a non-DDH tuple, the sender can break the receiver’s
security with trapdoor (logg0 h0, logg1 h1).

– If (g0, h0, g1, h1) is a DDH tuple, the receiver can break the sender’s security
with trapdoor logg0 g1.

In [28], the simulator is constructed using these two properties.
In our protocol, the receiver chooses group G and its elements g0, h0, g1 ∈ G.

Then, the sender and the receiver execute a coin-toss protocol and generate a
random element h1 ∈ G. Finally, the sender and receiver execute the oblivious
transfer protocol of [28] using (g0, h0, g1, h1) as the CRS. We note that, because
of the security of the coin-toss protocol, (g0, h0, g1, h1) is a non-DDH tuple with
overwhelming probability. Then, our protocol has the following properties.



– Super-polynomial-time senders can break the receiver’s security by comput-
ing trapdoor (logg0 h0, logg1 h1) in super-polynomial time.

– Super-polynomial-time receivers can let (g0, h0, g1, h1) be a DDH tuple by
cheating in the coin-toss protocol in super-polynomial time. Then, the re-
ceivers can break the sender’s security with trapdoor logg0 g1.

Then, we construct a simulator using these two properties.

Although the idea of our protocol is relatively simple, the security proof is
not so simple. The reason is that the simulator runs in super-polynomial time
whereas we assume only an assumption for polynomial-time adversaries. There-
fore, we cannot use simple reduction to prove the indistinguishability between
the real-world execution (which runs in polynomial time) and the ideal-world
execution (which runs in super-polynomial time). To overcome this problem,
we use the technique of [12]. The idea is that we define a hybrid execution in
which we use rewinding instead of the super-polynomial power. Then, since the
running time of the hybrid execution is polynomial time, we can use the DDH
assumption to prove the indistinguishability between the real execution and the
hybrid execution. In contrast, since we can show the indistinguishability be-
tween the hybrid execution and the ideal execution without any computational
assumption, the super-polynomial-time simulator does not cause any problem.

2 Preliminaries

2.1 Notations

Let N denote the set of all positive integers. For any q ∈ N, let Zq denote the

set {0, . . . , q − 1}. For any set X, let x
U←− X denote that x is an element of

X chosen uniformly at random. For any random variable X, let x
R←− X denote

that x is a value chosen at random according to the probability distribution of
X. For any randomized algorithm Algo, let Algo(x) denote a random variable
for the output of Algo on input x with a uniformly-chosen random tape. For any
random variable X, let Algo(X) denote a random variable for the output of Algo

on input x
R←− X with a uniformly-chosen random tape.

Let λ denote a security parameter. Let ε(λ) denote an arbitrary negligible
function in λ. That is, for any constant c > 0, there exists N ∈ N such that for
any n > N we have ε(n) < 1/nc. For any probability ensembles X = {Xk}k∈N
and Y = {Yk}k∈N, let X

c
≈ Y denote that X and Y are computationally in-

distinguishable. That is, we have X
c
≈ Y if and only if for any probabilistic

polynomial-time distinguisher D we have

|Pr [D(Xλ) = 1]− Pr [D(Yλ) = 1]| < ε(λ)

for a sufficiently large λ.



2.2 The Assumption

In this paper, we use the DDH assumption. Let GenG be a probabilistic polynomial-
time algorithm that, on input 1λ, outputs a description of cyclic group G, its
order q, and generator g ∈ G. Then, the DDH assumption on GenG is defined as
follows.

Definition 1 (DDH assumption). We say that the DDH assumption holds
on GenG if for any probabilistic polynomial-time algorithm A we have∣∣∣∣∣∣∣∣∣∣

Pr

[
A(G, q, g, gx, gy, gxy) = 1

∣∣∣∣∣ (G, q, g)
R←− GenG(1λ);

x, y
U←− Zq;

]

−Pr

[
A(G, q, g, gx, gy, gz) = 1

∣∣∣∣∣ (G, q, g)
R←− GenG(1λ);

x, y, z
U←− Zq;

]
∣∣∣∣∣∣∣∣∣∣
< ε(λ).

2.3 UC Framework

In this section, we briefly review the UC framework. For full details, see [3].
The model for protocol execution consists of environment Z, adversary A,

and the parties running protocol π. In the execution of the protocol, the envi-
ronment Z is first invoked on external input z. Environment Z adaptively gives
inputs to the parties and receives outputs from them. In addition, Z communi-
cates freely with A throughout the execution of the protocol. On inputs from Z,
the parties execute π by sending messages to each other. Adversary A sees all
communications between the parties and controls the schedule of the communi-
cations. In addition, adversary A can corrupt some parties. After corruption, A
receives all internal information of the corrupted parties. Moreover, from now
on, A can fully control the corrupted parties. In this paper, we assume that
there exist authenticated communication channels6. Thus, the adversary can-
not change the contents of messages sent by the honest parties. In addition, in
this paper we consider only static adversaries. In other words, we assume that
the adversary corrupts parties only at the beginning of the protocol execution.
The protocol execution ends when Z outputs a bit. Let Execπ,A,Z(λ, z) denote
a random variable for the output of Z on security parameter λ ∈ N and in-
put z ∈ {0, 1}∗ with a uniformly-chosen random tape. Let Execπ,A,Z denote the
ensemble {Execπ,A,Z(λ, z)}λ∈N,z∈{0,1}∗ .

The security of protocol π is defined using the ideal protocol. In the execution
of the ideal protocol, all parties simply hand their inputs to ideal functionality F .
Ideal functionality F carries out the desired task securely and gives outputs to
the parties. The parties simply forward these outputs to Z. Let dummy parties
denote the parties in the ideal protocol. Adversary S in the execution of the
ideal protocol is often called the simulator. Let π(F) denote the ideal protocol
for functionality F . Let IdealF,S,Z denote the ensemble Execπ(F),S,Z .

6 This is not essential since authentication can be realized by a protocol, given a
standard authentication infrastructure [4].



Then, the security of π is defined by comparing the execution of π (referred
to as the real world) and the execution of π(F) (referred to as the ideal world).

Definition 2 (UC-realization). Let π be a protocol and F be an ideal func-
tionality. We say that π UC-realizes F if for any adversary A there exists a
simulator S such that for any environment Z we have

Execπ,A,Z
c
≈ IdealF,S,Z .

2.4 UC-SPS Framework

The UC-SPS framework [2,12,30] is the same as the UC framework except that
we allow the simulator to run in super-polynomial time. The running time of
the other machines is implicitly assumed to be polynomial time.

The UC realization is generalized naturally to the UC-SPS framework as
follows.

Definition 3 (UC-SPS-realization). Let π be a protocol and F be an ideal
functionality. We say that π UC-SPS-realizes F if for any adversary A there
exists a super-polynomial-time simulator S such that for any environment Z we
have

Execπ,A,Z
c
≈ IdealF,S,Z .

In general, the UC theorem [3] does not hold in the UC-SPS framework. Thus,
stand-alone security in the UC-SPS framework does not imply concurrent secu-
rity.

3 Concurrent Oblivious Transfer Protocol

In this section, we construct a concurrently-secure oblivious transfer protocol in
the UC-SPS framework and prove its security.

As noted in Section 2.4, we cannot use the UC theorem in the UC-SPS
framework to prove concurrent security. We therefore prove concurrent security
by defining the concurrent oblivious transfer ideal functionality FcOT and proving
that our protocol UC-SPS-realizes FcOT. The concurrent oblivious transfer ideal
functionality FcOT, which is based on the (stand-alone) oblivious transfer ideal
functionality [5], is shown in Fig. 1 7. Functionality FcOT captures concurrent
security since, with a single run of FcOT, the sender can send several values
to the receiver. Thus, by constructing a protocol that UC-SPS-realizes FcOT,
we obtain a concurrent oblivious transfer protocol. Here, ssid in FcOT is the
subsession ID, which is used to distinguish among the different subsessions that
take place within a single run of FcOT. We note that FcOT is different from the

7 We say that functionality F generates delayed output v to party P if F first sends to
S a note that it is ready to generate an output to P and, after S replies to the note,
F sends v to P . If the output is private, then v is not mentioned in this note [3].



Functionality FcOT

FcOT proceeds as follows, running with sender PS , receiver PR, and simulator S.

– Upon receiving input (Send, sid, ssid,m0,m1) from PS , if message
(Send, sid, ssid, . . .) was previously received, then do nothing. Else if sid =
(PS , PR, sid

′) for some sid′ and PR, then record (ssid,m0,m1) and send
(InputS , sid, ssid) to S. Furthermore, if a value (ssid, σ) is recorded, then gen-
erate private delayed output (Output, sid, ssid,mσ) to PR.

– Upon receiving input (Receive, sid, ssid, σ) for σ ∈ {0, 1} from PR, if mes-
sage (Receive, sid, ssid, . . .) was previously received, then do nothing. Else if
sid = (PS , PR, sid

′) for some sid′ and PS , then record (ssid, σ) and send
(InputR, sid, ssid) to S. Furthermore, if a value (ssid,m0,m1) is recorded,
then generate private delayed output (Output, sid, ssid,mσ) to PR.

Fig. 1. The concurrent oblivious transfer functionality FcOT.

multi-session oblivious transfer functionality F̂OT [7, 28], with which any party
can concurrently send messages to other parties. Unlike F̂OT, here only a fixed
party PS can interact with FcOT as a sender8, and as a result FcOT does not
capture any kind of non-malleability.

3.1 Protocols

First, we show a challenge-response based extractable commitment scheme 〈C,R〉,
and then we show our concurrent oblivious transfer protocol ΠOT, which uses
〈C,R〉 as a primitive.

Extractable Commitment Scheme 〈C,R〉. Let Com be a non-interactive
perfectly-binding commitment scheme9. Then the extractable commitment scheme
〈C,R〉, which is used in literature such as [12,27,29], is defined as follows.

Commit Phase. Sender C commits to element a of group G for receiver R as
follows.

(1) C ⇒ R: For each i ∈ {1, 2, . . . , k = ω(log λ)}, C chooses αi
U←− G and

computes A
(0)
i

R←− Com(αi) and A
(1)
i

R←− Com(aα−1
i ). Then C sends these

{(A(0)
i , A

(1)
i )}ki=1 to R.

(2) R⇒ C: Receiver R chooses r1, . . . , rk
U←− {0, 1} and sends them to C.

(3) C ⇒ R: Sender C opens all of {A(ri)
i }ki=1 to R.

8 In this paper, we define FcOT in such a way that only a single sender and a single
receiver can interact with FcOT. Our protocol remains secure even when we modify
FcOT so that (a) a single sender and multiple receivers can interact with FcOT or (b)
multiple senders and a single receiver can interact with FcOT.

9 We can construct an efficient non-interactive perfectly-binding commitment scheme
under the DDH assumption using ElGamal encryption.



Open Phase. Sender C sends a, and opens all of {(A(0)
i , A

(1)
i )}ki=1 to R.

It is known that 〈C,R〉 is a perfectly-binding commitment scheme [27].

Concurrent Oblivious Transfer Protocol ΠOT. Our concurrent oblivious
transfer protocol ΠOT is described below. Here, we use algorithm GenG described
in Section 2.2.

When the input of the sender is (Send, sid, ssid,m0,m1) and the input of
the receiver is (Receive, sid, ssid, σ), sender PS and receiver PR do the following.
(For simplicity, we assume m0,m1 ∈ {0, 1}. It is easy to modify our protocol so
that the sender can send any m0,m1 ∈ {0, 1}O(log λ). In addition, if there is an

efficiently-decodable encoding scheme from {0, 1}λ to G for any G R←− GenG(1λ),
the sender can send any m0,m1 ∈ {0, 1}λ.)

(1) PR ⇒ PS : Receiver PR computes (G, q, g0)
R←− GenG(1λ). Next, PR chooses

x, y
U←− Zq and sets h0 := gx0 , g1 := gy0 . Then PR sends (sid, ssid,G, q, g0, h0,

g1) to PS .

(2) PS ⇔ PR: Sender PS chooses a
U←− G. Then PS commits to a for PR using

〈C,R〉. In other words, PS and PR do the following.

(2.1) PS ⇒ PR: For each i ∈ {1, 2, . . . , k = ω(log λ)}, PS chooses αi
U←− G

and computes A
(0)
i

R←− Com(αi) and A
(1)
i

R←− Com(aα−1
i ). Then PS sends

(sid, ssid, (A
(0)
1 , A

(1)
1 ), . . . , (A

(0)
k , A

(1)
k )) to PR.

(2.2) PR ⇒ PS : Receiver PR chooses r1, . . . , rk
U←− {0, 1} and sends (sid, ssid,

r1, . . . , rk) to PS .

(2.3) PS ⇒ PR: Sender PS opens all of {A(ri)
i }ki=1 to PR. If PS fails to open

one of these commitments, PR aborts the protocol.

(3) PR ⇒ PS : Receiver PR chooses b
U←− G and sends (sid, ssid, b) to PS .

(4) PS ⇒ PR: Sender PS opens the commitment of 〈C,R〉 in step (2). If PS fails
to open the commitment, PR aborts the protocol.

(5) PS and PR set h1 := ab.

(6) PR ⇒ PS : Receiver PR chooses r
U←− Zq and sets g := grσ, h := hrσ. Then PR

sends (sid, ssid, g, h) to PS .

(7) PS ⇒ PR: For each i ∈ {0, 1}, sender PS chooses si, ti
U←− Zq, sets (ui, vi) :=

(gsii h
ti
i , g

sihti), and sets ci := (ui, vig
mi
0 ). Then, PS sends (sid, ssid, c0, c1)

to PR.
(8) Receiver PR parses cσ as (cσ,0, cσ,1). Next, PR sets m̃σ := 1 if cσ,1/c

r
σ,0 = g0

and sets m̃σ := 0 otherwise. Then, PR outputs (Output, sid, ssid, m̃σ).

3.2 Security Proof

In this section, we prove the following theorem.

Theorem 4. Assume that the DDH assumption holds. Then, protocol ΠOT UC-
SPS-realizes FcOT.



Proof. We need to show that for any adversaryA there exists a super-polynomial-
time simulator S such that for any environment Z we have

ExecΠOT,A,Z
c
≈ IdealFcOT,S,Z . (1)

In the real world, the sender sends several values concurrently using ΠOT.
The schedule of the message delivery is determined by adversary A. In the ideal
world, the sender sends several values using FcOT. A single run of FcOT consists
of several subsessions, where a single value is sent in each subsession.

First, we show the description of simulator S for adversary A. Simulator S
internally invokes A and forwards every message from Z to the internal A. For
each message that internal A outputs to Z, simulator S simply forwards it to
external Z. Furthermore, S internally simulates a real world with A as follows.

Case 1. Corrupted PS and Honest PR. Since internal A behaves as the
sender on behalf of corrupted PS , simulator S needs to interact with A as the
receiver. In addition, S needs to extract both of the sender’s values and send
them to FcOT. Toward this, S does the following for each subsession.

– Simulator S starts the subsession in the same way as honest PR does. That

is, S computes (G, q, g0)
R←− GenG(1λ), chooses x, y

U←− Zq, sets h0 := gx0 ,
g1 := gy0 , and sends (G, q, g0, h0, g1) to internal A.

– Upon receiving {(A(0)
i , A

(1)
i )}ki=1 from A, simulator S chooses r′1, . . . , r

′
k

U←−
{0, 1} and extracts the committed values of {A(r′i)

i }ki=1 by breaking the hiding

property of Com in super-polynomial time. Then, S chooses r1, . . . , rk
U←−

{0, 1} and sends them to A in the same way as honest PR does.
– If A opens the commitments of Com correctly in response to challenge
r1, . . . , rk, simulator S extracts committed value a of 〈C,R〉 by combin-
ing these opened values with the above extracted values10. Then S sends

b := a−1gxy0 to A. Here, if S finds out that commitment {(A(0)
i , A

(1)
i )}ki=1 of

〈C,R〉 is invalid when S tries to extract a, simulator S sends b
U←− G instead.

– When A opens the commitment of 〈C,R〉, simulator S verifies its validity in
the same way as honest PR does.

– Simulator S chooses r
U←− Zq, sets (g, h) := (gr1, h

r
1), and sends (g, h) to A.

– Upon receiving (c0, c1) = ((c0,0, c0,1), (c1,0, c1,1)) from A, simulator S sets

m̃i := 1 for each i ∈ {0, 1} if ci,1/c
ry1−i

i.0 = g0 and sets m̃i := 0 otherwise.
Then, simulator S sends (Send, sid, ssid, m̃0, m̃1) to FcOT.

In summary, S extracts committed value a of 〈C,R〉 in super-polynomial
time and sets b := a−1gxy0 . This will let h1 := ab = gxy0 . Then, we have

(g, h) = (gr1, h
r
1) = (gry0 , hry0 ) .

Simulator S sets m̃i := 1 for each i ∈ {0, 1} if ci,1/c
ry1−i

i,0 = g0 and sets m̃i := 0
otherwise. Then, S sends (m̃0, m̃1) to FcOT.

10 Since the probability that (r1, . . . , rk) = (r′1, . . . , r
′
k) holds is negligible, we simply

assume (r1, . . . , rk) 6= (r′1, . . . , r
′
k) in what follows.



Case 2. Honest PS and Corrupted PR. Since internal A behaves as the
receiver on behalf of corrupted PR, simulator S needs to communicate with A
as the sender knowing only one of the two values that honest PS sent to FcOT.
Toward this, S does the following for each subsession.

Simulator S interacts with A as the honest sender from step (1) to step (6).
Upon receiving (g, h) from A, simulator S checks whether or not (g0, h0, g, h)
is a DDH tuple in super-polynomial time. Next, S sets σ̃ := 0 if (g0, h0, g, h) is
a DDH tuple and sets σ̃ := 1 otherwise. Then, S sends (Receive, sid, ssid, σ̃) to
FcOT. Upon receiving (Output, sid, ssid,m) from FcOT, simulator S carries out

step (7) by letting mσ̃ := m and m1−σ̃
U←− {0, 1}.

Case 3. Honest PS and Honest PR. Simulator S interacts with A both as
the sender and as the receiver. As the sender, S behaves honestly with input
(m0 = 0,m1 = 0). As the receiver, S behaves honestly with input σ = 0.

Next, we show that, if the above simulator S is used, we have (1) for each
case.

Analysis of Case 1. We need to show that for any probabilistic polynomial-
time distinguisher D and any polynomial p, we have

|Pr [D(ExecΠOT,A,Z(λ)) = 1]− Pr [D(IdealFcOT,S,Z(λ)) = 1]| < 1

p(λ)
(2)

for a sufficiently large λ.
Let ` be an upper bound of the number of subsessions and let δ(λ) := 3`·p(λ).

We define the indices of the subsessions based on the order in which the messages
of step (2.2) appear in the interaction between PS and PR. That is, the message
of step (2.2) of subsession 1 appears before the message of step (2.2) of subsession
2, and the message of step (2.2) of subsession 2 appears before the message of
step (2.2) of subsession 3, and so on.

To prove that we have (2), we use a hybrid argument by defining machines
B0, . . . , B2`+1. First, we describe the idea behind our argument. In the ideal
world, simulator S extracts committed value a of 〈C,R〉 in step (2) of each
subsession. Let us call this committed value a the trapdoor secret of each subses-
sion. Now, machine B0 internally executes the real-world protocol and machine
B2`+1 internally executes the ideal-world protocol. In the sequence of hybrid
machines, we change B0 into B2`+1 step by step by increasing the number of
subsessions of which the trapdoor secrets are extracted. That is, we will define
B2(i−1) (i = 1, . . . , `) so that the trapdoor secrets of subsession j (j = 1, . . . , i−1)
are extracted and used as in the ideal world. Then, we will define B2i−1 by mod-
ifying B2(i−1) in such a way that the trapdoor secret of subsession i is also
extracted (but not used). Each hybrid machine records these extracted trapdoor
secrets in a list, a-List. We note that the hybrid machines, except B2`+1, are
designed so that they do not use their super-polynomial power to extract the



trapdoor secrets11. Instead, they use polynomial-time rewinding and extract the
trapdoor secrets using the extractability of 〈C,R〉12.

Now, let us define hybrid machines B0, . . . , B2`+1. First, we introduce some
notations. The hybrid machines, except B2`+1, internally execute the real-world
protocol repeatedly with different randomness. That is, they internally invoke
machines such as Z andA, execute the protocol, rewind all the machines, execute
the protocol again, rewind all the machines again, and so on. We let a thread
denote a single execution of the protocol. A thread begins when internal Z
is invoked, and the thread ends when internal Z outputs a bit. Each hybrid
machine outputs whatever internal Z outputs in the last thread. Let us call this
last thread the main thread of each hybrid machine.

Machine B0. As its main thread, machine B0 internally executes the real-world
protocol by internally invoking Z, A, PS , and PR. Machine B0 simply outputs
whatever the internal Z outputs.

Machine B2i−1 (i = 1, . . . , `). First, B2i−1 runs in the same way as B2(i−1),
but B2i−1 does not output (and does not halt) even after the main thread of
B2(i−1) ends. At the time, the trapdoor secret of subsession j (j = 1, . . . , i− 1)
on the main thread of B2(i−1) is extracted and recorded in the a-List. After the
main thread of B2(i−1), machine B2i−1 rewinds this main thread13 and executes
it δ times with the same randomness except in step (2.2) of subsession i. Let us
call these δ threads the look-ahead threads. In each look-ahead thread, challenge
r1, . . . , rk in step (2.2) of subsession i is chosen fleshly.

In the case that A opens the commitments of Com correctly in step (2.3)
of subsession i in the main thread of B2(i−1) and in at least one of the δ look-
ahead threads, B2i−1 extracts trapdoor secret a of subsession i by combining
the opened values of these two threads. Then, B2i−1 adds a pair (i, a) to the
a-List. If B2i−1 finds out that the commitment of 〈C,R〉 is invalid when it tries
to extract a, then B2i−1 adds (i,⊥) to the a-List instead.

In the case that A does not open the commitments of Com correctly in step
(2.3) of subsession i in all δ look-ahead threads but opens them correctly in the
main thread of B2(i−1), machine B2i−1 outputs ⊥ and halts. Let us call this
event RewindAborti.

After all look-ahead threads end, if RewindAborti does not occur, B2i−1 exe-
cutes the main thread of B2(i−1) once again with exactly the same randomness.
This thread is the main thread of B2i−1. The output of B2i−1 is whatever internal
Z outputs in this thread.

Remark 5. We note that B2i−1 can execute each look-ahead thread without any
problem such as recursive rewinding. To see this, observe that each look-ahead

11 If hybrid machines are super-polynomial-time machines, it is difficult to show the
indistinguishability between the outputs of hybrid machines based on assumptions
for polynomial-time adversaries.

12 The technique of replacing the super-polynomial power with the polynomial-time
rewinding is used in [6, 12].

13 That is, B2i−1 rewinds all the machines such as Z and A.



thread proceeds in exactly the same way as the main thread of B2(i−1) until
step (2.2) of subsession i. In particular, the message of step (2.1) in subsession
j (j = 1, . . . , i − 1) in each look-ahead thread is the same as the message in
the main thread of B2(i−1). This means that the trapdoor secret of subsession j
(j = 1, . . . , i − 1) in each look-ahead thread is the same as the trapdoor secret
in the main thread of B2(i−1). Thus, the values that are extracted and recorded
in the a-List before the rewinding are valid even after the rewinding. Therefore,
since B2i−1 can also use them in the look-ahead threads, there is no recursive
rewinding.

Machine B2i (i = 1, . . . , `). B2i runs in the same way as B2i−1 except that, in
step (3) of subsession i in the main thread, internal PR sets b := a−1gxy0 if (i, a)

is recorded in the a-List for a 6= ⊥. In the case of a = ⊥, internal PR sets b
U←− G

as in B2i−1.

Machine B2`+1. B2`+1 internally executes the ideal-world protocol by internally
invoking Z, S, the dummy party PS and PR. Machine B2`+1 outputs whatever
the internal Z outputs.

Next, we show the indistinguishability among the outputs of hybrid machines.
Below, we let Execi(λ) denote the random variable for the output of machine Bi.

B2(i−1) and B2i−1 (i = 1, . . . , `). If RewindAborti does not occur in B2i−1, the
output of B2(i−1) and the output of B2i−1 are identical since their main threads
are the same. RewindAborti occurs in B2i−1 if A does not open the commitments
in step (2.3) on subsession i in all δ look-ahead threads but opens them correctly
in the main thread. Since A opens these commitments correctly in each look-
ahead thread with the same probability as in the main thread, we can show
that RewindAborti occurs in B2i−1 with probability at most 1/δ. Thus, for any
probabilistic polynomial-time distinguisher D, we have∣∣Pr

[
D(Exec2(i−1)(λ)) = 1

]
− Pr [D(Exec2i−1(λ)) = 1]

∣∣ ≤ 1

δ(λ)
. (3)

B2i−1 and B2i (i = 1, . . . , `). B2i is the same as B2i−1 except that B2i sets b :=

a−1gxy0 instead of b
U←− G in step (3) of subsession i on the main thread. Thus,

from the DDH assumption, for any probabilistic polynomial-time distinguisher
D, we have

|Pr [D(Exec2i−1(λ)) = 1]− Pr [D(Exec2i(λ)) = 1]| < ε(λ) . (4)

B2` and B2`+1. In B2`, all the trapdoor secrets are extracted and used as in
B2`+1. Machine B2` uses rewinding to extract the trapdoor secrets, whereas
machine B2`+1 uses its super-polynomial power. In order to show the indis-
tinguishability, it suffices to show that the honest receiver’s outputs and the
computed trapdoor secrets in B2` are the same as the ones in B2`+1.



First, we show the indistinguishability between B2` and B2`+1 under the
condition that RewindAborti does not occur in B2` for all i. In this case, in each
subsession, trapdoor secret a that B2` records in the a-List and trapdoor secret a
that S computes in B2`+1 are identically distributed. To see this, observe that in
both machines we can think that the trapdoor secret a is computed by combining
two responses of 〈C,R〉 for two different challenges. In addition, since we have

(g, h) = (gr1, h
r
1) = (gry0 , hry0 ) (since we have h1 = gxy0 )

in B2`+1, the receiver outputs the same value in B2` and B2`+1. Therefore, we
conclude that the view of Z in the main threads of B2` and the view of Z in
B2`+1 are identical if RewindAborti does not occur in B2` for all i.

Next, we compute the probability that RewindAborti occurs in B2` for some
i. From (3) and (4), we have

|Pr [D(Exec0(λ)) = 1]− Pr [D(Exec2`(λ)) = 1]| ≤ `

δ(λ)
+ ε(λ) , (5)

for any probabilistic polynomial-time distinguisher D. Since RewindAborti does
not occur in B0 for all i, we conclude that RewindAborti occurs in B2` for some
i with probability at most `/δ(λ) + ε(λ).

Combining the above, we conclude that for any probabilistic polynomial-time
distinguisher D we have

|Pr [D(Exec2`(λ)) = 1]− Pr [D(Exec2`+1(λ)) = 1]| ≤ `

δ(λ)
+ ε(λ) . (6)

Finishing the Analysis of Case 1. From (5) and (6), for any probabilistic polynomial-
time distinguisher D, we have

|Pr [D(Exec0(λ)) = 1]− Pr [D(Exec2`+1(λ)) = 1]| ≤ 2`

δ(λ)
+ ε(λ) .

By substituting Exec0(λ) = ExecΠOT,A,Z(λ), Exec2`+1(λ) = IdealFcOT,S,Z(λ) and
δ(λ) = 3` · p(λ), we have (2).

Analysis of Case 2. In the real world, honest sender PS interacts with A (via
the corrupted receiver) using m0 and m1, which PS received as an input from Z.
In the ideal world, simulator S interacts with internal A honestly using m0 and
m1, where mσ̃ is received from FcOT and m1−σ̃ is chosen uniformly at random.
Thus, in the view of Z, the only possible difference between the real world and
the ideal world is the value of c1−σ̃ = (u1−σ̃, v1−σ̃g

m1−σ̃
0 ). In what follows, we let

µ := 1− σ̃.
First, we show the indistinguishability under the condition that (g0, h0, g1, h1)

is a non-DDH tuple in each subsession both in the real world and in the ideal
world. In this case, at least one of (g0, h0, g, h) and (g1, h1, g, h) is also a non-DDH
tuple in each subsession. From the definition of σ̃, this means that (gµ, hµ, g, h)



is a non-DDH tuple. That is, there exist α, β, γ ∈ Zq such that (hµ, g, h) =
(gαµ , g

β
µ , g

γ
µ) and αβ 6= γ. Using this, we can show that vµ is uniformly random

for Z. To see this, observe that we have

uµ = gsµµ h
tµ
µ = g

sµ+αtµ
µ ,

vµ = gsµhtµ = gβsµ+γtµ
µ

for random sµ and tµ, and the expressions sµ + αtµ and βsµ + γtµ are linearly
independent combinations of sµ and tµ when αβ 6= γ. Thus, the distribution of
cµ is independent of mµ. Therefore, the view of Z is identically distributed in
the real world and the ideal world.

Next, we compute the probability that (g0, h0, g1, h1) is a DDH tuple in some
subsessions. Below, we show that this probability is negligible in the real world.
In this case, since simulator S interacts with internal A honestly (with uniformly
chosen mµ) and the computation of (g0, h0, g1, h1) is independent of the message
mµ, we conclude that this probability is also negligible in the ideal world.

Then, we show that (g0, h0, g1, h1) is a DDH tuple with negligible probability
in the real world. Let us consider the following experiment ExpBi (λ) for the
hiding property of 〈C,R〉. First, adversary B sends (a0,0, a0,1, a1,0, a1,1) to the
challenger. Then, the challenger commits to ai,0 and ai,1 for B by invoking 〈C,R〉
sequentially. Finally, B outputs bit i′, which is the output of ExpBi (λ). Advantage
AdvB(λ) of B is

AdvB(λ) :=
∣∣∣Pr
[
ExpB0 (λ) = 1

]
− Pr

[
ExpB1 (λ) = 1

]∣∣∣ .
Using the hiding property of 〈C,R〉, we can show that we have AdvB(λ) < ε(λ) for
any B. Below, we show that, if in the real world (g0, h0, g1, h1) is a DDH tuple
in some subsession j∗ with probability 1/λc for some constant c > 0, we can
construct adversary B∗ such that AdvB∗(λ) is non-negligible, which contradicts
the hiding property of 〈C,R〉.

Adversary B∗ chooses j
U←− {1, . . . , `} (here, ` is the upper bound of the

number of subsessions), and internally executes the real-world execution until
step (2.1) of subsession j. Let (sid, ssidj ,Gj , qj , gj,0, hj,0, gj,1) be the message of

step (1) in subsession j. Then, B∗ chooses a0,0, a0,1, a1,0, a1,1
U←− Gj and sends

them to the challenger. When the challenger starts 〈C,R〉, adversary B∗ forwards
it to the internal execution as step (2) of subsession j. We call this internal
execution exec0. Let (sid, ssidj , b0) be the message of step (3) in subsession j of
exec0. Next, B∗ rewinds exec0 to step (2) of subsession j. Then, B∗ receives the
next commitment of 〈C,R〉 from the challenger and forwards it to the rewound
internal execution as step (2) of subsession j. We call this second execution exec1.
Let (sid, ssidj , b1) be the message of step (3) in subsession j of exec1. Then, B∗
outputs 1 if and only if b0/b1 = a−1

0,0/a
−1
0,1 holds.

Let ρ be a partial transcript such that step (2) of subsession j∗ begins imme-
diately after ρ in the real execution. Then, from the average argument, it holds



that

Pr [(g0, h0, g1, h1) is a DDH tuple in subsession j∗ | ρ occurs] ≥ 1

2λc

with probability at least 1/2λc over the choice of ρ.

In B∗, we have j = j∗ with probability 1/`. In addition, in ExpB
∗

0 (λ), we have

Pr
[
b0 = a−1

0,0g
xjyj
j,0

∧
b1 = a−1

0,1g
xjyj
j,0

∣∣∣ j = j∗
]
≥ 1

2λc
·
(

1

2λc

)2

,

where xj := loggj,0 hj,0 and yj := loggj,0 gj,1. Thus, we have Pr
[
ExpB

∗

0 (λ) = 1
]
≥

1/(8`λ3c). On the other hand, since no information about a0,0 and a0,1 is fed into

exec0 and exec1 in ExpB
∗

1 (λ), we have Pr
[
ExpB

∗

1 (λ) = 1
]
≤ 1/|G| < ε(λ). There-

fore, we have AdvB∗(λ) ≥ 1/poly(λ). Since this contradicts the hiding property
of 〈C,R〉, we conclude that the probability that (g0, h0, g1, h1) is a DDH tuple
in some subsession is negligible in the real world.

Combining the above, we conclude that (1) holds in Case 2.

Analysis of Case 3. First, the outputs of the honest receiver in the real world
are the same as in the ideal world. This is because, in each subsession of the real
world, the receiver outputs 1 if and only if it holds that

g0 =
cσ,1
crσ,0

=
vσg

mσ
0

urσ
=
gsσhtσgmσ0

(gsσσ h
tσ
σ )r

= gmσ0 .

Thus, to show the indistinguishability, it suffices to show that Z cannot tell
whether it interacts with A in the real world or it interacts with the internal A
(of S) in the ideal world. Toward this, let us consider the following hybrid.

Hybrid H0 is the same as the ideal world except that, in each subsession, sim-
ulator S uses honest parties’ inputs m0, m1, and σ instead of 0. Note that
the view of Z in H0 is the same as in the real world.

Hybrid H1 is the same as H0 except that S sets σ := 1 in each subsession.
The view of Z in H1 is indistinguishable from the one in H0 since, from the
DDH assumption, (g0, h0, g1, h1, g

r
0, h

r
0) and (g0, h0, g1, h1, g

r
1, h

r
1) are indis-

tinguishable for Z.
Hybrid H2 is the same as H1 except that S sets m0 := 0 in each subsession.

The view of Z in H2 is identical with the one in H1 except with negligible
probability since, from the same argument as in Case 2, the distribution of
c0 in each subsession is independent of the value of m0 except with negligible
probability.

Hybrid H3 is the same as H2 except that S sets σ := 0 in each subsession.
From the same argument as in H1, the view of Z in H3 is indistinguishable
from the one in H2.



Hybrid H4 is the same as H3 except that S sets m1 := 0 in each subsession.
From the same argument as in H2, the view of Z in H4 is identical with the
one in H3 except with negligible probability.

Since H4 is the same as the ideal world, it holds that the view of Z in the real
world is indistinguishable from the one in the ideal world. We therefore conclude
that (1) holds in Case 3.

Since we have (1) for all three cases, we conclude that protocol ΠOT UC-SPS-
realizes FcOT. ut

4 Conclusion

This paper showed a concurrently-secure oblivious transfer protocol in the SPS
security without any setup. Our protocol is efficient since it does not use any
inefficient primitive such as general zero-knowledge proofs for all NP statements.
Therefore, our protocol may be useful for practical purposes.

It should be noted that, unlike many previous studies on SPS security, we
considered only concurrent security and do not considered other security no-
tions such as non-malleability [10] and UC security. Thus, our protocol achieves
somewhat restricted security. However, we believe that concurrent security is
sufficient for various settings such as a network in which one party is a server
and the others are clients. It would be interesting to improve our protocol so
that non-malleability or the UC security is also guaranteed.
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