
All rights are reserved and copyright of this manuscript belongs to the authors.
This manuscript has been published without reviewing and editing as received
from the authors: posting the manuscript to SCIS 2006 does not prevent future
submissions to any journals or conferences with proceedings.

SCIS 2006 The 2006 Symposium on
Cryptography and Information Security

Hiroshima, Japan, Jan. 17-20, 2006
The Institute of Electronics,

Information and Communication Engineers

Short Group Signatures with Efficient Flexible Join

Toshiaki Makita ∗ Yoshifumi Manabe ∗ † Tatsuaki Okamoto ∗ †

Abstract— We present a short group signature scheme with an efficient (concurrent) join protocol.
Signatures in our scheme are almost as short as Boneh, Boyen and Shacham’s Short Group Signatures
(BBS04) that has no join protocol, and the computational costs of our scheme are also almost as
efficient as BBS04. The security of our group signature is based on the Decision Linear Diffie-Hellman
assumption and the 2 Variable Strong Diffie-Hellman (2SDH) assumption, which is a slightly strong
variant of the Strong Diffie-Hellman (SDH) assumption. We prove the security of our system, in the
random oracle model, using a security definition for group signatures recently given by Bellare, Shi,
and Zhang.

Keywords: Group Signature, Short Signature, Bilinear Mapping

1 Introduction

Group signatures were proposed by Chaum and van
Heyst [6]. This mechanism provides signers anonymity,
that is, any member of a group can sign on behalf of
the group while hiding the identity of the actual signer
within the group. However, Opener (one of group man-
agers) can identify the actual signer if needed, for in-
stance, in the case of unfair usage. We can apply group
signatures to many various areas, such as voting and
bidding.

Bilinear maps, which take advantage of pairings on
elliptic curve, have been found useful, and many ap-
plications have been proposed recently, e.g., identity-
based encryption, short signatures, and short group
signatures. Boneh, Boyen and Shacham’s short group
signatures [4] (BBS04), which is based on Boneh and
Boyen’s short signatures [3] (BB04), is currently one
of the most efficient and shortest signature schemes.
However, BBS04 did not implement a join protocol and
exculpability, and only showed how to implement it.
Some works have proposed new schemes after BBS04,
e.g., Kiayias and Yung [8] (KY05), Furukawa and Imai [7]
(FI05), Boyen and Waters [5] (BW05), and Ateniese,
Camenisch, de Medeiros and Hohenberger [1] (ACMH05).
KY05 implemented a concurrent join protocol, but its
signature length is too long. FI05 proposed an efficient
and short signature, but it does not provide security
proof and does not implement concurrent join. BW05
and ACMH05 proposed provably secure group signa-
ture schemes in the standard model. However, the sig-
nature length of BW05 depends on the number of mem-
bers, and verifying or opening algorithm of ACMH05 is
inefficient. Therefore, any provably secure group signa-

∗ Department of Social Informatics, Graduate School of Infor-
matics, Kyoto University, Yoshidahonmachi, Sakyo-ku, Kyoto-
shi, Japan, makita@lab7.kuis.kyoto-u.ac.jp

† NTT Laboratories, 1-1 Hikarino-oka, Yokosuka-
shi, Japan, manabe.yoshifumi@lab.ntt.co.jp,
okamoto.tatsuaki@lab.ntt.co.jp

tures (with or without random oracles) with (efficient
concurrent) join protocols are much less efficient/longer
than the BBS04 signatures.

We propose a provably secure group signature scheme
that is efficient and whose signature length is almost as
short as BBS04. Moreover, it is secure even if users con-
currently join. Our scheme is based on Okamoto’s new
efficient signature scheme [9], while BBS04 is based on
BB04.

2 Preliminaries

2.1 Bilinear Groups

This paper follows the notation regarding bilinear
groups in [3]. Let (G1,G2) be bilinear groups as follows:

1. G1 and G2 are two cyclic groups of prime order p,

2. g1 is a generator of G1 and g2 is a generator of G2,

3. ψ is an isomorphism fromG2 toG1, with ψ(g2) = g1,

4. e is a non-degenerate bilinear map e : G1×G2 → GT ,
where |G1| = |G2| = |GT | = p, and

5. e, ψ and the group action in G1, G2 and GT can be
computed efficiently.

2.2 Assumptions

2.2.1 The Decision Linear Diffie-Hellman As-
sumption [4]

Let G1 be a cyclic group of prime order p. Let u, v, h
be generators of G1. Consider the following problem:

Decision Linear Problem in G1. Given u, v, h, ua,
vb, hc ∈ G1 as input, output yes if a + b = c and no
otherwise.

The advantage of an adversary A in deciding the
Decision Linear problem in G1 is defined as

AdvLinear
A =

∣∣∣∣∣∣∣∣∣∣

Pr

[
A(u, v, h, ua, vb, ha+b) = yes :

u, v, h
R← G1, a, b

R← Zp

]

−Pr

[
A(u, v, h, ua, vb, η) = yes :
u, v, h, η

R← G1, a, b
R← Zp

]

∣∣∣∣∣∣∣∣∣∣

.

Definition 2.1. The (t, ε)-Decision Linear Diffie-
Hellman Assumption holds in G1 if no t-time algorithm
has advantage at least ε in solving the Decision Linear
problem in G1.

Linear Encryption [4]. We use an encryption
scheme, called the Linear Encryption, that is an ex-
tension of ElGamal encryption. This scheme is de-
rived from the Decision Linear Problem, and is se-
cure even in groups where an algorithm which solves
the Decisional Diffie-Hellman problem exists. In this
scheme, a user’s public key is a triple of generators
u, v, h ∈ G1; its private key is the exponents x, y ∈ Zp

such that ux = vy = h. To encrypt a message m ∈ G1,
choose random values a, b ∈ Zp, and output the triple
(ua, vb, mha+b). To recover the message from an en-
cryption (T1, T2, T3), the user computes T3/(T x

1 · T y
2).

This encryption scheme is semantically secure against
chosen plaintext attacks, assuming the Decision Linear
Diffie-Hellman Assumption holds.

2.2.2 The 2 Variable Strong Diffie-Hellman As-
sumption [9]

Let G1, G2 be cyclic groups of prime order p. Let g1

be a generator of G1 and g2 a generator of G2. Consider
the following problem:

q-2 Variable Strong Diffie-Hellman Prob-
lem. The q-2SDH problem in (G1,G2) is
defined as follows: given a (2q + 6)-tuple

(g1, g2, g
x
2 , . . . , gxq

2 , gy
2 , gyx

2 , . . . , gyxq

2 , g
y+a
x+b

2 , a, b) as

input, output a pair (g
1

x+c

1 , c) where c ∈ Z∗p. Algorithm
A has advantage ε in solving q-2SDH in (G1,G2) if

Pr

[
A

(
g1, g2, g

x
2 , . . . , gxq

2 ,

gy
2 , gyx

2 , . . . , gyxq

2 , g
y+a
x+b

2 , a, b

)
= (g

1
x+c

1 , c)

]
≥ ε,

where the probability is over the random choice of gen-
erator g2 in G2 (with g1 ← ψ(g2)), of x, y, a, b in Z∗p,
and of the random bits of A.

Definition 2.2. The (q, t, ε)-2SDH assumption holds
in (G1,G2) if no t-time algorithm has advantage at least
ε in solving the q-2SDH problem in (G1,G2).

2.3 Security of Group Signature

2.3.1 A Model for Group Signature Scheme
Parties which appear in a group signature scheme are

users, which consist of members (group members) and
others, Issuer, which can issue member certifications to
users, and Opener, which can trace a signature to the
member that created the signature. A group signature
scheme is composed of the following algorithms:

GKEYGEN: A probabilistic algorithm that outputs
the group public key, the Opener secret key, and
the Issuer secret key.

UKEYGEN: A probabilistic algorithm that outputs
a personal public and secret key pair (upk[i],
usk[i]). A user that wants to be a group member
should begin by running UKEYGEN. We assume
that the table upk is public.

JOIN, ISSUE: JOIN and ISSUE are interactive algo-
rithms that realize a protocol with which a user
can join the group. They are, respectively, used
by users, given the user’s secret key, and Issuer,
given the Issuer secret key. By this protocol, the
user gets the group signing key and Issuer gets
values unique to the member related to OPEN.
Issuer writes the new member’s secret informa-
tion in its registration table reg.

SIGN: A probabilistic algorithm that outputs a group
signature, given a group member’s secret key and
a message.

VERIFY: A deterministic algorithm that determines
whether a signature is valid or not, given the
group public key, a message, and the signature.

OPEN: A deterministic algorithm that outputs the
signer of a valid signature, given the Opener se-
cret key, a message, and its signature. Here,
Opener can read the content of Issuer’s registra-
tion table reg. OPEN also makes a proof-string
that can be verified by JUDGE to prove that
OPEN is correctly executed.

JUDGE: A deterministic algorithm that verifies a
proof-string output by OPEN, given a user iden-
tity, a message, a valid signature, and its proof-
string.

2.3.2 Security Definitions
We use a security definition given by Bellare, et al. [2].

Following the definition, a group signature scheme must
fulfill correctness and the following security require-
ments: anonymity, traceability, and non-frameability.

Anonymity. The anonymity demands that no signa-
ture can be traced to some member identity or linked
to any other signature by anyone other than Opener.

CPA-Anonymity. In our proofs, we use a relaxed
anonymity requirement, called CPA-anonymity that is
similar to CPA-full-anonymity defined in BBS04 [4]. In
the CPA-anonymity experiment, the adversary cannot
query the opening oracle. We assume that Opener is
highly trusted and adversary cannot access it as long
as it is honest, and we prove security in this CPA-
anonymity model.

Traceability. Traceability demands that the adver-
sary be unable to produce a signature such that either
the honest opener declares itself unable to identify the
origin of the signature, or, the honest opener believes
it has identified the origin but is unable to produce a
correct proof of its claim.

Non-frameability. Non-frameability asks that the
adversary be unable to create a judge-accepted proof
that an honest user produced a certain valid signature
unless the user really did produce this signature.

2.4 Basic Signature Scheme [9]

We describe a signature scheme that is strongly exis-
tentially unforgeable against chosen plaintext attacks,
and this scheme is a fundamental element of the pro-
posed group signature scheme.

Public key: g2, u, v ∈ G2, g1 ← ψ(g2), w ← gx
2

Secret key: x ∈ Z∗p
Signature generation: Let m be a message to be

signed. Signer randomly selects (r, s) from Zp,
(if x + r = 0, selects r again,) and computes

σ ← (gm
1 ψ(uvs))

1
x+r .

(σ, r, s) is the signature of m.

Verification: Check σ 6= 1 and e(σ,wgr
2)

?= e(g1, g
m
2 uvs).

Security: This scheme is (qS , t, ε)-strongly existen-
tially unforgeable against adaptively chosen mes-
sage attacks under the (q, t′, ε′)-2SDH assump-
tion, where qS < q, ε ≥ 3qε′, t ≤ t′−Θ(q2T), and
T is the maximum time for an exponentiation in
G1 and G2.

3 Proposed Group Signature Scheme

We now describe the construction of the proposed
group signature scheme. We use a bilinear group pair
(G1,G2) with a computable isomorphism ψ, as in Sec-
tion 2.1. We assume the basic signature scheme is
strongly existentially unforgeable against chosen mes-
sage attacks and the Decision Linear Diffie-Hellman as-
sumption holds on G2. Moreover, we use a signature
scheme that is existentially unforgeable against chosen
message attacks as the user’s signature scheme. Let a
hash function H : {0, 1}∗ → Zp be a random oracle.

In JOIN and ISSUE, although users do not prove the
knowledge of the logarithm of Bi, this scheme is still
secure, because a user that does not know qi cannot
generate a valid signature. In addition, as long as qi

and sk i is secret, any other secret value of users can be
public, so users and Issuer can communicate via public
channels.

3.1 Parameters

Public key: g2, u, v ∈ G2, g1 ← ψ(g2), w ← gx
2 , U ←

gξ1
2 , V ← gξ2

2 , {pk i| i ∈ member}
Secret key of Issuer: x ∈ Z∗p (only for Issuer);

{(Bi ← gqi

2 , ri, si) | i ∈ member} (shared with
member i)

Secret key of Opener: ξ1, ξ2 ∈ Z∗p
Secret key of member i: qi ∈ Z∗p , sk i (only for mem-

ber i);
Ai ← ψ(Biuvsi)

1
x+ri , ri, si (shared with Issuer)

3.2 Algorithms

GKEYGEN: Issuer uniformly selects g2, u, v
R← G2,

x
R← Z∗p, sets g1 ← ψ(g2), w ← gx

2 , and publishes

(g1, g2, u, v, w). Opener then uniformly picks ξ1, ξ2
R←

Z∗p, computes U ← gξ1
2 , V ← gξ2

2 , and publishes
(U, V). The group public key is (g1, g2, u, v, w, U, V),
the Issuer key is x, and the Opener key is (ξ1, ξ2).

UKEYGEN: A user i runs a key generation algo-
rithm of a certain signature scheme, called user’s
signature scheme, and obtain a key pair (pk i, sk i) =
(upk[i], usk[i]) (where any signature scheme can be
used as long as it is existentially unforgeable against
chosen message attacks).

JOIN: User i uniformly selects qi ∈ Z∗p and computes
Bi ← gqi

2 . User i then creates signature sig i on Bi

using sk i, and sends (Bi, sig i) to Issuer.

ISSUE: Issuer checks whether sig i is a valid signature
on Bi for i’s public key pk i. If it is valid, Issuer ran-
domly selects ri and si from Zp (if x+ri = 0, selects
ri again), computes Ai ← ψ(Biuvsi)

1
x+ri , and sends

(Ai, ri, si) to i (Here, e(Ai, wgri
2) = e(g1, Biuvsi)).

Issuer writes (Ai, Bi, ri, si, sig i) in the ith entry of
its registration table reg.

SIGN: Member i randomly selects α1, α2 and β from
Zp, and computes

a ← Aig
α1+α2
1 , d1 ← ψ(U)α1 ,

b ← (wgri
2)β , d2 ← ψ(V)α2 ,

c ← (Biuvsi)βbα1+α2 .

Member i also generates a (Fiat-Shamir heuristic)
signature to prove the knowledge of (α1, α2, β, βri,

βqi, βsi) for b = gβri

2 wβ , c = gβqi

2 uβvβsibα1+α2 , d1 =
ψ(U)α1 , d2 = ψ(V)α2 as follows:

t̃1 ← gR̃1
2 wR̃2 , Z̃1 ← R̃1 + h̃βri mod p,

t̃2 ← gR̃3
2 uR̃2vR̃4bR̃5+R̃6 , Z̃2 ← R̃2 + h̃β mod p,

t̃3 ← ψ(U)R̃5 , Z̃3 ← R̃3 + h̃βqi mod p,

t̃4 ← ψ(V)R̃6 , Z̃4 ← R̃4 + h̃βsi mod p,

h̃ ← H(t̃1, t̃2, t̃3, t̃4, m), Z̃5 ← R̃5 + h̃α1 mod p,

Z̃6 ← R̃6 + h̃α2 mod p.

Here R̃1, . . . , R̃6 are randomly selected from Zp. i

outputs σ ← (a, b, c, d1, d2, h̃, Z̃1, Z̃2, Z̃3, Z̃4, Z̃5, Z̃6).

VERIFY: A verifier with public key (g1, g2, w, u, v, U,
V) and message m along with signature σ checks
whether the following equations hold or not.

e(a, b) ?= e(g1, c), t̃′3 ← ψ(U)Z̃5/dh̃
1 ,

t̃′1 ← gZ̃1
2 wZ̃2/bh̃, t̃′4 ← ψ(V)Z̃6/dh̃

2 ,

t̃′2 ← gZ̃3
2 uZ̃2vZ̃4bZ̃5+Z̃6/ch̃, h̃

?= H(t̃′1, t̃
′
2, t̃

′
3, t̃

′
4,m).

OPEN: Opener computes Ai = a/(d1/ξ1
1 d

1/ξ2
2) and

generates a signature to prove the knowledge of (ξ1, ξ2)

for Ai = a/(d1/ξ1
1 d

1/ξ2
2), U = gξ1

2 , V = gξ2
2 as follows:

X1 ← d
1/ξ1
1 , t̂4 ← gR̂2

2 ,

X2 ← d
1/ξ2
2 , ĥ ← H(t̂1, t̂2, t̂3, t̂4),

t̂1 ← XR̂1
1 , Ẑ1 ← R̂1 + ĥξ1 mod p,

t̂2 ← XR̂2
2 , Ẑ2 ← R̂2 + ĥξ2 mod p.

t̂3 ← gR̂1
2 ,

Here R̂1 and R̂2 are randomly selected from Zp.
Opener reads Issuer’s registration table reg, and de-
termines the identity of σ’s signer i. Opener outputs
i and proof-string τ ← (sig i, Bi, Ai, ri, si, X1, X2, ĥ,
Ẑ1, Ẑ2).

JUDGE: A judge with a member identity i, a mes-
sage m, a valid signature σ of m and a proof-string
τ checks whether sig i is a valid signature on Bi for
pk i and whether the following equations hold or not.

e(Ai, wgri
2) ?= e(g1, Biuvsi), t̂′3 ← gẐ1

2 /U ĥ,

Ai
?= a/(X1X2), t̂′4 ← gẐ2

2 /V ĥ,

t̂′1 ← XẐ1
1 /dĥ

1 , ĥ
?= H(t̂′1, t̂

′
2, t̂

′
3, t̂

′
4).

t̂′2 ← XẐ2
2 /dĥ

2 ,

4 Security

Theorem 4.1. The group signature scheme is cor-
rect.

Proof. A group signature is verified by an equation
e(a, b) ?= e(g1, c) and a Fiat-Shamir heuristic signature
to prove the knowledge. As long as the Fiat-Shamir
heuristic signature is correctly generated, it is always
accepted and the equation e(a, b) = e(Ai, (wgri

2)β) ·
e(gα1+α2

1 , (wgri
2)β) = e(g1, Biuvsi) · e(g1, b

α1+α2) =
e(g1, c) always holds, so a correct signature is always
accepted by VERIFY.

Moreover, Opener proves Ai = a/(d1/ξ1
1 d

1/ξ2
2), e(Ai,

wgri
2) = e(g1, Biuvsi) and that sig i is valid. A cor-

rect signature is opened correctly as long as Opener is
honest, Issuer’s registration table is not rewritten by
the adversary, and the user’s signature scheme is cor-
rect. Besides, since Opener is honest, his proof-string
is always accepted by JUDGE. ¤

Theorem 4.2. If the (t′, ε′)-Decision Linear Diffie-
Hellman assumption holds in G2 then the group sig-
nature scheme is (t, qH , ε)-CPA-anonymous, where ε =
2ε′ and t = t′ − qHO(1).

Proof. AssumeA is an algorithm that (t, qH , ε)-breaks
the anonymity of the group signature scheme. We con-
struct an algorithm B that, by interacting with A,
solves the Decision Linear Problem in time t′ with ad-
vantage ε′.

Algorithm B is given a random instance (U, V, g2,
Uα1 , V α2 , gγ

2) of the Decision Linear Problem. It gen-
erates the components of the group signature public

key and the Issuer key, i.e., sets g1 ← ψ(g2), picks ran-
dom u, v

R← G2, x
R← Z∗p and computes w ← gx

2 . It then
provides to A the group public key (g1, g2, w, u, v, U, V)
and issuer key x.

If a member with index i is added, B generates the
user secret key, i.e., selects random qi

R← Z∗p, ri, si
R← Zp

(if x+ri = 0, selects ri again) and a random user’s sig-
nature key pair pk i, sk i. It then carries out JOIN and
ISSUE and writes (Ai, Bi, ri, si, sig i) in Issuer’s regis-
tration table reg[i]. When A corrupts a user, B hands
A its secret key.

At any time, A can query the random oracle H. Al-
gorithm B responds with elements selected uniformly
at random from Zp, making sure to respond identically
to repeated queries.
A requests its anonymity challenge by providing two

indices, i0 and i1, and a message m. B, in turn, choices
a random bit ` ∈ {0, 1} (Pr[` = 0] = Pr[` = 1] = 1/2),
selects random β

R← Zp and computes a ← Ai`
ψ(gγ

2),

b ← (wg
ri`
2)β , c ← (Bi`

uvsi`)βg
γ(x+ri`

)β

2 , d1 ← ψ(Uα1),
d2 ← ψ(V α2).
B randomly generates the remaining signature val-

ues, h̃, Z̃1, . . . , Z̃6
R← Zp. B then computes t̃′1, t̃

′
2, t̃

′
3, t̃

′
4

from h̃, Z̃1, . . . , Z̃6, and patches H(t̃′1, t̃
′
2, t̃

′
3, t̃

′
4,m) to

equal h̃. It returns a signature σ ← (a, b, c, d1, d2, h̃,
Z̃1, Z̃2, Z̃3, Z̃4, Z̃5, Z̃6) to A.

Finally, A outputs a bit `′. If `′ = `, B outputs yes
(guesses γ = α1 + α2). Else (if `′ 6= `), B outputs no.

Here,

Pr[`′ = `]

= Pr[Expanon-`
A (k) = `′]

= Pr[Expanon-1
A (k) = 1] · Pr[` = 1]

+ Pr[Expanon-0
A (k) = 0] · Pr[` = 0]

=
1
2
· (Pr[Expanon-1

A (k) = 1] + Pr[Expanon-0
A (k) = 0]).

If γ = α1 + α2,

Pr[Expanon-1
A (k) = 1] + Pr[Expanon-0

A (k) = 0] = ε + 1.

So,

Pr

[
B(U, V, g2, U

α1 , V α2 , gα1+α2
2) = yes :

U, V, g2
R← G2, α1, α2

R← Zp

]
=

ε + 1
2

.

Else (if γ 6= α1 + α2),

Pr[Expanon-1
A (k) = 1] + Pr[Expanon-0

A (k) = 0] = 1.

Therefore,

Pr

[
B(U, V, g2, U

α1 , V α2 , η) = yes :
U, V, g2, η

R← G2, α1, α2
R← Zp

]
=

1
2
.

Consequently, ε′ = AdvLinear
B = ε/2. ¤

Theorem 4.3. If the basic signature scheme is (qS , t′,
ε′)-strongly existentially unforgeable against chosen mes-
sage attacks, then the group signature scheme is (t, qH ,
n, ε)-traceable, where n = qS, ε = 4

√
ε′qH + 1/p, and

t = Θ(1) · t′.

Proof. Assume A is an algorithm that (t, qH , n, ε)-
breaks the traceability of the group signature scheme.
We construct an algorithm B that, by interacting with
A, breaks the basic signature scheme in time t′ with ad-
vantage ε′, where qS is the maximum number of signing
oracle queries made by B.

Algorithm B is given a random public key (g1, g2, w,
u, v) of the basic signature scheme. It generates the
components of the group signature public key and the
Opener key, i.e., picks random ξ1, ξ2

R← Z∗p and com-
putes U ← gξ1

2 , V ← gξ2
2 . It then provides to A the

group public key (g1, g2, w, u, v, U, V) and Opener key
(ξ1, ξ2).

If a member with index i is added, B generates the
user secret key, i.e., selects random qi

R← Z∗p, and a ran-
dom user’s signature key pair pk i, sk i. It then carries
out JOIN and ISSUE, and Issuer uses the signing oracle
of the basic signature scheme to output (Ai, ri, si) given
qi as input (message) and writes (Ai, Bi, ri, si, sig i) in
Issuer’s registration table reg[i]. When A corrupts a
user, B hands A its secret key.

At any time, A can query the random oracle H. Al-
gorithm B responds with elements selected uniformly
at random from Zp, making sure to respond identically
to repeated queries.

Eventually, A outputs a valid message-signature pair,
the signer of which cannot be identified by Opener
(since the proof-string τ is accepted by JUDGE as long
as Opener is honest). This means the component A of
the signature does not correspond to that of any mem-
ber in reg. Therefore, (q, (A, r, s)) used to make the
signature is a forgery (message-signature pair) of the
basic signature scheme.

We now describe how to extract (q, A, r, s). From
now on, we abbreviate signatures as (m, σ̃, t̃, h̃, Z̃),
where σ̃ = (a, b, c, d1, d2), t̃ = (t̃1, t̃2, t̃3, t̃4), and Z̃ =
(Z̃1, Z̃2, Z̃3, Z̃4, Z̃5, Z̃6).

An execution of A completely depends on a ran-
dom string ω used by A and a vector f of the re-
sponses of the hash oracle. Let S be the set of pairs
(ω, f) such that A completes successfully with a forgery
(m, σ̃, t̃, h̃, Z̃) and A queried the hash oracle on (t̃,m).
In this case, we let Ind(ω, f) be the index of f at which
A queried (t̃, m) and define ν = Pr[S] = ε − 1/p,
where the 1/p corresponds to the possibility that A
guessed the response of hash oracle on (t̃,m) for it-
self. For each j, 1 ≤ j ≤ qH , let Sj be the set of
pairs (ω, f) such that Ind(ω, f) = j, and let J be the
set of indices j such that Pr[Sj |S] ≥ 1/(2qH). Then
Pr[Ind(ω, f) ∈ J |S] ≥ 1/2.

Let f |ba represents elements at indices a, a + 1, . . . , b
of f . For each j ∈ J , we consider the heavy-rows
lemma [10, Lemma 1] where rows X and columns Y
are all possible values of (ω, f |j−1

1) and f |qH

j respec-
tively. Clearly Pr(x,y)[(x, y) ∈ Sj] ≥ ν/(2qH). Let the
heavy rows Ωj be those rows such that, ∀(x, y) ∈ Ωj :
Pry′ [(x, y′) ∈ Sj] ≥ ν/(4qH). Then, by the heavy-rows
lemma, Pr[Ωj |Sj] ≥ 1/2. It obviously follows that
Pr[∃j ∈ J : Ωj ∩ Sj |S] ≥ 1/4.

Thus, with probability ν/4, A succeeds and obtains a

forgery (m, σ̃, t̃, h̃, Z̃) derived from a heavy row (x, y) ∈
Ωj for some j ∈ J , i.e., an execution (ω, f) such
Prf ′ [(ω, f ′) ∈ Sj | f ′|j−1

1 = f |j−1
1] ≥ ν/(4qH).

If we now rewind the execution of A to the jth query,
and proceed with an oracle vector f ′ that differs from
f from the jth entry on, we obtain, with probability at
least ν/(4qH), a successful execution completion and a
second forgery (m, σ̃, t̃, h̃′, Z̃ ′), with (t̃,m) still queried
at A’s jth hash query.

By using the extractor, we obtain from (σ̃, t̃, h̃, Z̃)
and (σ̃, t̃, h̃′, Z̃ ′) a forgery (q, (A, r, s)), i.e., βr ← (Z̃1−
Z̃ ′1)/(h̃ − h̃′), β ← (Z̃2 − Z̃ ′2)/(h̃ − h̃′), βq ← (Z̃3 −
Z̃ ′3)/(h̃− h̃′), βs ← (Z̃4 − Z̃ ′4)/(h̃− h̃′) and q ← βq/β,
A ← a/(d1/ξ1

1 d
1/ξ2
2), r ← βr/β, s ← βs/β. They meet

e(A, wgr
2) = e(g1, g

q
2uvs), A is not among those that

have appeared so far, and the advantage of B is at
least (ε− 1/p)2/16qH . ¤

Theorem 4.4. If the user’s signature scheme is
(q′S , t′, ε′)-existentially unforgeable against chosen mes-
sage attacks and the discrete logarithm problem in G2 is
(t′′, ε′′)-hard, then the group signature scheme is
(t, qH , qS , n, ε)-non-frameable, where ε = max(nε′,
4n
√

ε′′qH + n/p) and t = max(t′ − qHO(1),Θ(1) · t′′).
Proof. AssumeA is an algorithm that (t, qH , qS , n, ε)-
breaks the non-frameability of the group signature
scheme. We construct an algorithm B that, by interact-
ing with A, breaks the user’s signature scheme in time
t′ with advantage ε′, where qS is the maximum num-
ber of signing oracle queries (of the user’s signature
scheme) made by B, or solves the discrete logarithm
problem in time t′′ with advantage ε′′.

Algorithm B is given a random public key pk of
the user’s signature scheme and parameters g2, B =
gq
2 ∈ G2 of the discrete logarithm problem. It gener-

ates the components of the group signature public key,
the Issuer key, and the Opener key, i.e., picks random
x, y, z, ξ1, ξ2

R← Z∗p and computes g1 ← ψ(g2), w ←
gx
2 , u ← gy

2 , v ← gz
2 , U ← gξ1

2 , V ← gξ2
2 . It then pro-

vides to A the group public key (g1, g2, w, u, v, U, V)
the Issuer key x, and the Opener key (ξ1, ξ2).

If a member i is added, B picks random qi
R← Z∗p,

ri, si
R← Zp (if x+ri = 0, selects ri again) and a random

user’s signature key pair sk i, pk i, and computes Bi ←
gqi

2 . It then carries out JOIN and ISSUE and writes
(Ai, Bi, ri, si, sig i) in Issuer’s registration table reg[i].
For one arbitrary member i′, B uses pk and B = gq

2

as pk i′ and Bi′ respectively instead of random values
in JOIN. In this process, B uses the signing oracle of
the user’s signature scheme to sign B for pk . When A
corrupts the member i′ for which B used pk and B, B
halts. If A corrupts another member, B hands A its
secret key.

At any time, A can query the random oracle H. Al-
gorithm B responds with elements selected uniformly
at random from Zp, making sure to respond identi-
cally to repeated queries. Moreover, A anytime can
query the signing oracle of the group signature scheme
for any member i and message m′. B generates sig-

Our Scheme BBS04 [4]
without JOIN

KY05 [8] ACMH05 [1]
(O(1)OPEN)

JOIN 3ExpE170
+ 2Pair - 3ExpE195

+ 3Pair 22ExpE170
+ 4Pair

ISSUE 2ExpE170
+ Pair - 3ExpE195

12ExpE170
+ Pair

User→Issuer (bits) 512 - 1000 2043
User←Issuer (bits) 511 - 783 513

SIGN 9ExpE170
7ExpE170

+ ExpZ1020

6ExpE195
+

36ExpZ1024
+3Pair 43ExpE170

VERIFY 4ExpE170
+

2Pair
5ExpE170

+
ExpZ1020

+ Pair
3ExpE195

+
21ExpZ1024

+3Pair 13Pair

Sig.Length (bits) 2045 1533 24813 3249

Table 1: Comparison

nature values (a, b, c, d1, d2, h̃, Z̃1, . . . , Z̃6) correctly us-
ing Ai, ri, si, qi. If A requests i′’s signature, B picks
randomly h̃, Z̃1, . . . , Z̃6

R← Zp, computes t̃′1, . . . , t̃
′
4 from

h̃, Z̃1, . . . , Z̃6, and patches H(t̃′1, t̃
′
2, t̃

′
3, t̃

′
4, m

′) to equal
h̃. B returns the signature to A.

Eventually, A outputs a valid message-signature pair
(m,σ = (a, b, c, d1, d2, h̃, Z̃1, . . . , Z̃6)), an uncorrupted
member with identity j, and a proof-string τ = (sigj ,

Bj , Aj , rj , sj , X1, X2, ĥ, Ẑ1, Ẑ2) which is acceptable with
(m,σ, j) by JUDGE. This means that Aj = a/(dξ1

1 dξ2
2),

e(Aj , wg
rj

2) = e(g1, Bjuvsj), and that sigj is a valid
signature on Bj for pk j .

Assume sigj is a forgery. If j is not the member i′

for which B used pk as pk j , B halts. Else, the theo-
rem is proven and advantage ε′ = ε/n. If sigj is not
a forgery, Bj is surely the value sent by j to Issuer in
JOIN (Bj in reg[j] has not been rewritten). If j is
not the member i′ for which B used B = gq

2 as Bj ,
B halts. Else, it is possible that Aj , rj , sj that meets
e(Aj , wg

rj

2) = e(g1, Buvsj) and r′j , s
′
j , B

′ = gq′
2 that

meets e(Aj , wg
r′j
2) = e(g1, B

′uvs′j) were newly gener-
ated by A, the former was written into reg[j], and the
latter was used to comprise σ. However, (q′, r′j , s

′
j) can

be extracted from σ in the same way as theorem 4.3
and (q + y + sjz)/(x + rj) = (q′ + y + s′jz)/(x + r′j)
holds, so B can compute q. Consequently, B can ob-
tain the discrete logarithm q of B with advantage ε′′ =
(ε/n− 1/p)2/16qH in time t′′ = Θ(1) · t. ¤

5 Comparison

We show the comparison of our scheme with other
schemes in table 1. ExpEN

and ExpZN′
are the costs for

computing a multi-exponentiation on an elliptic curve
with N -bit order and on ZN ′ respectively. Pair repre-
sents the costs for computing a pairing. User→Issuer
and User←Issuer represent the volume of communica-
tion in JOIN and ISSUE. Sig.Length is the length of a
signature.

ACMH05 proposed group signature schemes with O(n)
and O(1) OPEN algorithms, where n is the number of
members of the group. Although SIGN and VERIFY
of the O(n) OPEN scheme is more efficient than that of
the O(1) OPEN scheme, we compare our scheme with
the O(1) OPEN scheme because OPEN of our scheme

is O(1).

6 Conclusion

We presented a group signature scheme based on
the 2 Variable Strong Diffie-Hellman assumption and
the Decision Linear Diffie-Hellman assumption. This
scheme has an efficient concurrent join protocol and
its signature length is short. Our scheme is the most
efficient and practical group signature scheme among
group signature schemes that have efficient concurrent
join protocols and are provably secure with/without
random oracles.

References

[1] Ateniese, G., Camenisch, J., de Medeiros, B. and Hohen-
berger, S., “Practical Group Signatures without Random
Oracles,” http://eprint.iacr.org/2005/385, 2005.

[2] Bellare, M., Shi, H. and Zhang, C., “Foundations of Group
Signatures: The Case of Dynamic Groups,” In Proceedings
of CT-RSA 2005, LNCS Vol. 3376, pp. 136–153.

[3] Boneh, D. and Boyen, X., “Short Signatures without
Random Oracles,” In Proceedings of EUROCRYPT 2004,
LNCS Vol. 3027, pp. 56–73.

[4] Boneh, D., Boyen, X. and Shacham, H., “Short Group
Signatures,” In Proceedings of CRYPTO 2004, LNCS
Vol. 3152, pp. 41–55.

[5] Boyen, X. and Waters, B., “Compact
Group Signatures Without Random Oracles,”
http://eprint.iacr.org/2005/381, 2005.

[6] Chaum, D. and van Heyst, E., “Group Signatures,” In Pro-
ceedings of EUROCRYPT 1991, LNCS Vol. 547, pp. 257–
265.

[7] Furukawa, J. and Imai, H., “An Efficient Group Signa-
ture Scheme from Bilinear Maps,” In Proceedings of ACISP
2005, LNCS Vol. 3574, pp. 455–467.

[8] Kiayias, A. and Yung, M., “Group Signatures with Efficient
Concurrent Join,” http://eprint.iacr.org/2005/345,
2005.

[9] Okamoto, T., “Efficient Blind and Partially Blind Signa-
tures Without Random Oracles,” To appear in Proceedings
of TCC 2006.

[10] Pointcheval, D. and Stern, J., “Security Arguments for Dig-

ital Signatures and Blind Signatures,” Journal of Cryptol-

ogy, Vol. 13, No. 3, pp. 361–396, 2000.

