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Abstract— An anonymous credential is one of the most important notions to counter some of the privacy
problems with identity certificates. This paper propose an efficient anonymous credential system that is provably
secure in the standard model(i.e., without random oracle model). Our system consists of two parts: a signature
scheme and proving knowledge of the signature. A user gets a proof of identity from the signer by using the
signature scheme from bilinear maps, and proves knowledge of the signature to a verifier by using a three-
move interactive identification scheme. We first present the schemes we used. We then present the anonymous
credential system, which is more efficient than existing systems.
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1 Introduction

1.1 Background

The concept of anonymous credential systems was intro-
duced by Chaum[4], and after that, many researchers pro-
posed anonymous credential systems in order to counter
some of the privacy difficulties related to identity certifi-
cates, and to idealize the implementation of physical cre-
dentials, like entry certification, driver’s licenses, and so on.

The basic properties of anonymous credential systems are
as follows: It should be impossible for a user to forge a cre-
dential for the user, even if users and other organizations
team up and launch an adaptive attack on the organization.
It should also be impossible for an organization to find out
anything about the user, apart from the fact that the user has
ownership of some set of credentials, even if it cooperates
with other organizations. In particular, two pseudonyms be-
longing to the same user are unlinkable. Finally, the system
is expected to be efficient. To know more about the history
and motivation behind anonymous credentials, Chapter 3 of
Lysyanskaya’s Ph.D thesis[7] is a very-well written exposi-
tion.

Existing anonymous credential schemes are based upon
the Strong RSA assumption, or the LRSW[8] assumption.
For example, Camenisch and Lysyanskaya proposed an anony-
mous credential scheme[3] that is secure under the LRSW
assumption for groups with bilinear maps. But in the case of
LRSW assumption, it seems to be identical to the signature
scheme proposed in [3].

∗ Department of Social Informatics, Graduate School of Informat-
ics, Kyoto University, Yoshidahonmachi, Sakyo-ku, Kyoto-shi, Japan
(akagi@ai.soc.i.kyoto-u.ac.jp)

† NTT Cyber Space Laboratories, 1-1 Hikarinooka, Yokosuka-shi, Japan
/ Department of Social Informatics, Graduate School of Informatics,
Kyoto University, Yoshidahonmachi, Sakyo-ku, Kyoto-shi, Japan (man-
abe.yoshifumi@lab.ntt.co.jp)

‡ NTT Information Sharing Platform Laboratories, 1-1 Hikarinooka,
Yokosuka-shi, Japan/ Department of Social Informatics, Graduate
School of Informatics, Kyoto University, Yoshidahonmachi, Sakyo-ku,
Kyoto-shi, Japan(okamoto.tatsuaki@lab.ntt.co.jp)

1.2 Our results

In this paper, we construct an anonymous credential sys-
tem that is based on the blind signature scheme proposed
in [10], and on the three-move identification scheme pro-
posed in [9] . The signature scheme is secure under q-SDH
assumptions, and is used in various other schemes. Then
the identification scheme, which is used to prove knowledge
of a signature, is also secure under non-interactive assump-
tions. Our anonymous credential system is more efficient
than that based on the LRSW assumption.

2 Preliminaries

2.1 Bilinear Groups

This paper follows the notation regarding bilinear groups
given in [1, 2]. Let(G1,G2) be bilinear groups as follows:

1. G1 andG2 are two cyclic groups of prime orderp,
where possiblyG1 = G2,

2. g1 is a generator ofG1 andg2 is a generator ofG2,

3. ψ is an isomorphism fromG2 toG1, with ψ (g2)

4. e is a non-degenerate bilinear mape : G1×G2→ GT ,
where|G1| = |G2| = |GT | = p, i.e.,

• (Bilinear): for all u ∈ G1, v ∈ G2, for all a, b
∈ Z, e

(
ua, vb

)
= e(u, v)ab

• (Non-degenerate):e(g1,g2) , 1 (i.e.,e(g1,g2)
is a generator ofGT),

• (Efficient):e, ψ and the group inG1,G2 andGT

can be computed efficiently.

2.2 Anonymous Credential System

2.2.1 Definition of Anonymous Credential System
In this section, we define anonymous credential systems.

An anonymous credential system consists of parties which
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are users, authorities, and verifiers. Any anonymous cre-
dential system can perform the following operations.

Key Generation: AuthorityA, given security parameter
1k, outputs a pair of public-key and secret-key,(pk, sk). The
public keys are then published byA.

Credential Issuing Protocol: UserU has some kind of
datam thatU wants to obtain a certificate for. Such prop-
erties include “belongs to Kyoto University”, “is over the
age of 20.” or rights such as ”can access the secure room”.
HowS detects whetherm is valid or not with regard toU is
outside of this protocol.

Now U executes the credential issuing protocol form
with A by using user’s inputm and authority’s secret-key.
At the end of the protocol,U obtains the credentialσ, cor-
responding tom.

Credential Verification Protocol: After U obtains the
credential ofm,U executes the credential verification pro-
tocol of m with verifierV. At the end of the protocol,V
outputsaccept if the verification equations holds, and oth-
erwise outputsreject.

2.2.2 Security of Anonymous Credential System
In this section, we refer to the definition of the security of

anonymous credential systems. The security of anonymous
credential systems are defined as follows.

Unforgeable: UserU cannot forge a valid credentialσ
on any value, ifσ is not issued byA. We show a formal def-
inition below. There exists an adversaryAdv, which has no
information about the Authority’s secret-key.Adv can exe-
cute credential issuing protocl withA polynomial number
of times, and get credentials of adaptively chosen messages.
ThenAdv andV execute the credential verification protocol
of m, which has not been chosen byAdv yet. If the prob-
ability thatV outputsaccept at the end of the protocol is
negligible, the anonymous credential system is unforgeable.

Anonymity and Unlinkability : Anonymous credential
systems should have the property of anonymity and unlink-
ability. We merge these two properties into one definition
of security. The definition is as follows.

There is adversaryAdv that plays the roles of authority
and verifier. Let us introduce the following game among
Adv and two honest usersU0 andU1.

1. Adv outputs public-key, and a messagem.

2. Adv engages in the credential issuing protocol ofm
with two users,U0 andU1. The two users employ
the same data to obtain credentials.

3. (a) Adv engages in the credential verification proto-
col withU0 andU1. Adv can execute this pro-
tocol polynomial number of times.

(b) d ∈ {0,1} is chosen randomly.Ud andAdv ex-
ecute the credential verification protocol.Adv
also can execute this polynomial number of times.
Then, Adv can execute 3(a) again.

(c) A outputsd′ ∈ {0,1}, which is supposed to be
the adversary’s guess of valued.

If the probability thatd′ = d is 1/2+ ϵ, then the adversary’s
advantage is defined to beϵ. The anonymous credential sys-
tem is said to be anonymous and unlikable if the advantage
of any polynomial-time adversary is negligible.

2.3 Definition of Secure Signature Schemes

In this section we recall the standard notion of security,
existential unforgeability against chosen message attacks[1]
as well as a slightly stronger notion of security for a signa-
ture scheme: strong existential unforgeability against cho-
sen message attacks[6]. To define existential unforgeabil-
ity, we introduce the folloing game among adversaryA and
honest signerS.

1. Key setup:
Run key generation algorithmG (1n) to obtain a pair
of public-key and secret-key, (pk, sk). pk is given to
adversaryA, and (pk, sk) is given to signerS.

2. Queries to signing oracle:
A adaptively requestsS (or signing oracle) to sign
on at mostqs messages of his choicem1, ...,mqs, S
responds tomi with a signatureσi = S ( sk,mi).

3. Output:
Eventually,A outputs pair(m, σ). A wins the game
if
(a)m is not any ofmi (i = 1, ..., qs)
(b)V(pk, m, σ)=accept.
We defineAdvun f orge

S ig to be the probability thatAwins
the above game, taken over the coin tosses made by
A, G, andS.

Definition 1. (Existential Unforgeability) AdversaryA (t,qs, ϵ)-
forges a signature scheme ifA runs in time at mostt. A
makes at mostqs queries toS, andAdvun f orge

S ig is at least
ϵ. A signature scheme is(t,qs, ϵ)-existentially-unforgeable
under adaptive chosen message attacks if no adversaryA
(t,qs, ϵ)-forges the scheme.

Remark: (Strong Existential unforgeability) If the condi-
tion in Step 3a in the above game is changed to “(m, σ)
is not any of(mi , σi)” (instead of “m is not any ofmi”)
(i = 1, ..., qs), we obtain a stronger notion of unforgeabil-
ity. If a scheme satisfies the above definition of unforge-
ability under this stronger notion, we say that it is(t,qs, ϵ)-
strongly-existentially unforgeable under adaptive chosen mes-
sage attacks.

2.4 Definition of Secure Identification Schemes

2.4.1 Identification
Identification schemes are defined in [9] as follows.

Definition 2. An identification scheme consists of two stages:

1. Initialization: In this stage, each user (e.g.,A) gen-
erates a secret key (e.g.,S KA) and a public key (e.g.,
PKA) by using probabilistic polynomial-time gener-
ation algorithmG on input of the key size. A link be-
tween each user and its public key is commonly share
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established. Note that in some schemes a part of the
public key can be commonly shared among all users
as a system parameter.

2. Operation: In this stage, any user (e.g.,A) can demon-
strate its identity to a verifier by performing some
identification protocol related to its public key (e.g.,
PKA), where the input for the verifier is the public
key (e.g.,PKA). At the conclusion of this stage, the
verifier either outputs “accept” or “reject”.

2.4.2 Security of Identification schemes
A security of identification scheme is defined in [9].

Definition 3. A proverA (resp. verifierB) is a “good”
prover denoted byĀ (resp. “good” verifier denoted bȳB),
if it does not deviate from the protocols dictated by the
scheme. LetÃ be a fraudulent prover who does not com-
plete the initialization stage of Definition asPKA and may
deviate from the protocols (so another person/machine can
simulateÃ). B̃ is a not-goodB. Ã andB̃ are assumed to
be polynomial time bounded machines, that may be nonuni-
form.

An identification scheme(A,B) is secure if

1.
(
Ā, B̄

)
succeeds with overwhelming probability.

2. There is no coalition ofÃ, B̃ with the property that,
after a polynomial number of executions of

(
Ā, B̃

)
and relaying a transcript of the communication tōA,
it is possible to execute

(
Ã, B̄

)
with nonnegligible

probability of success. The probability is taken over
the distribution of the public key and the secret key as
well as the coin tosses of̄A, B̃, Ã, andB̄, up to the
time of the attempted impersonation.

3 Assumptions

3.1 Strong Diffie-Hellman (SDH) Assumption

Let (G1,G2) be bilinear groups (introduced in Section
2.1). The problem in(G1,G2) is defined as follows: given

the(q+ 2)-tuple
(
g1,g2,gx

2, ..., g
xq

2

)
as input, output pair

(
g

1
x+c

1 , c
)

wherec ∈ Z∗p. AlgorithmA has advantage,AdvS DH (q), in
solvingq-SDH in (G1,G2) if

AdvS DH (q)← Pr
[
A

(
g1,g2,g

x
2, ..., g

xq

2

)
=

(
g

1
x+c

1 , c
)]
,

where the probability is taken over the random choices of
g2 ∈ G2, x, y ∈ Z∗p, and the coin tosses ofA.

Definition 4. AdversaryA (t, ϵ)-breaks theq-SDH problem
if A runs in time at mostt and AdvS DH (q) is at leastϵ.
The(q, t, ϵ)-SDH assumption holds if no adversaryA (t, ϵ)-
breaks theq-SDH problem.

3.2 The Signature Scheme

We now present the signature scheme used in our anony-
mous credential system. The scheme below was presented
by Okamoto[10].

Okamoto Signature Scheme

Key Generation:
Randomly select generatorsg2, u2, v2 ∈ G2 and setg1 ←
ψ (g2), u1 ← ψ (u2), andv1 ← ψ (v2). Randomly selectx
∈ Z∗p and computew2 ← gx

2 ∈ G2. The public and secret
keys are:

Public key: g1,g2,w2,u2, v2

Secret key:x

Signature Generation:
Let m ∈ Z∗p be the message to be signed. SignerS ran-
domly selects r and s fromZ∗p, and computes

σ←
(
gm

1 u1vs
1

)1/(x+r)
.

Here 1/(x + r) modp (andm/(x + r) modp ands/(x + r)
modp) are computed. In the unlikely event thatx+ r ≡ 0
modp, we try again with a different randomr. (σ, r, s) is
the signature ofm.

Signature verification:
Given public-key(g1,g2,w2,u2, v2), messagem, and sig-
nature(σ, r, s), check thatm, r, s ∈ Z∗p, σ ∈ G1, σ , 1,
and

e
(
σ,w2gr

2
)
= e

(
g1,g

m
2 u2vs

2

)
If they hold, the verification result isvalid, otherwise
invalid.

3.3 A Three-Move Identification Scheme

In our anonymous credential system, a three-move iden-
tification scheme is essential so as to prove knowledge of
credentials. Okamoto proposed a three-move identification
scheme[9] that is almost as efficient as the Schnorr iden-
tification scheme[5], and proved that it is as secure as the
discrete logarithm problem. We use this three-move iden-
tification scheme to prove a knowledge of signature. We
later describe how this identification scheme is used in our
system.

4 Proposed Anonymous Credential System

In this section, we show our anonymous credential sys-
tem.

4.1 Key Generation

First, authorityA generates public-key(g1,g2,w2,u2, v2),
and secret-keyx in the same way as the signature scheme in
Section 3.2.

4.2 Credential Issuing Protocol

First, userU sends datam as a message, for whichU
wants to obtain a certificate, to authorityA.

U m−−−−−−−→ A

When message m is received fromU, A signs tom by
using the signature scheme described in Section 3.2.A then
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sends triple signature(σ, r, s), toU, whereσ =
(
gm

1 u1vs
1

)1/(x+r)
.

U (σ,r,s)←−−−−−−− A

U gets the credential corresponding tomas a signature.

4.3 Credential Verification Protocol

After getting its credential,U proves knowledge of the
credential to verifierV, instead of sending credential di-
rectly toV.

Proof of Knowledge of a Credential on a Messagem

Step 1:ProverU randomly selectst, θ fromZ∗p, and com-
putes

σ′ ← σt/θ =
(
gm

1 u1vs
1

)t/θ(x+r)
,

α← (
w2gr

2
)θ ,

β←
(
gm

2 u2vs
2

)t
.

and sends(σ′, α, β) to the verifierV.

U
(σ′,α,β)
−−−−−−−→ A

Step 2: VerifierV checks the equation below

e
(
σ′, α

)
= e(g1, β)

Step 3:U proves knowledge for the following statement:

PK{(θ, rθ) : α = wθ
2grθ

2 }

This proof of knowledge consists of the following two
proofs of knowledge.

(1)U randomly selectst1, t2, t3 from Z∗p, and computes

γ ← αt1gt2
2 ut3

2 ,

　 and sendsγ toV.

U
γ

−−−−−−−→ V

　U then proves knowledge toV for the following state-
ment:

PK{(t1, t2, t3) : γ = αt1gt2
2 ut3

2 }.

(2)U computes
δ← θt1,

　 and sendsδ toV.

U δ−−−−−−−→ V

U then proves knowledge toV for the following
　 statement:

PK{(ω, t3) : γ/wδ
2 = gω2 ut3

2 (∴ ω = rθt1 + t2)}.

We detail these two protocols later.

Step 4: ProverU sendsm toV.

U m−−−−−−−→ V

U andV then executes a proof of knowledge protocol for
the following statement:

PK{(t, st) : β =
(
gm

2

)t
ut

2vst
2 }

We describe details of this protocol later.

　
Now we show how the protocols in (1), (2) ofStep 3and in
Step 4work. The three-move identification schemes, pro-
posed in [9], are used in these protocols.

Three Proofs of Knowledge with Identification Schemes

1⃝ PK{(t1, t2, t3) : γ = αt1gt2
2 ut3

2 }

Common input: Public key and(α, γ)
Prover’s input: (t1, t2, t3)

Protocol:
Step1:U picks random numbersr1, r2, r3 ∈ Z∗p, computes
A = αr1gr2

2 ur3

2 , and sendsA toV.

U A−−−−−−−→ V

Step2:V sends a random numberb ∈ Z∗p toU.

U b←−−−−−−− V

Step3:U sends(c1, c2, c3) toV such that

c1 = r1 + bt1 mod p,
c2 = r2 + bt2 mod p,
c3 = r3 + bt3 mod p

U c1,c2,c3−−−−−−−→ V

Step4:V checks that

αc1gc2
2 uc3

2 = Aγb

If it holds,V outputsaccept, otherwisereject.

2⃝ PK{(ω, t3) : γ/wδ
2 = gω2 ut3

2 }

Common input: Public key and(γ, δ)
Prover’s input: (ω, t3)

Protocol:
Step1: U picks random numbersr1, r2 ∈ Z∗p, computes
A = gr1

2 ur2
2 , and sendsA toV.

U A−−−−−−−→ V
4



Step2:V sends a random numberb ∈ Z∗p toU.

U b←−−−−−−− V

Step3:U sends(c1, c2) toV such that

c1 = r1 + bω mod p,
c2 = r2 + bt3 mod p,

U c1,c2−−−−−−−→ V

Step4:V checks that

gc1
2 uc2

2 = A

(
γ

w2
δ

)b

If it holds,V outputsaccept, otherwisereject.

3⃝ PK{(t, st) : β =
(
gm

2

)t
ut

2vst
2 }

Common input: Public key and(β,m)
Prover’s input: (t, st)

Protocol:
Step1: U picks random numbersr1, r2 ∈ Z∗p, computes

A =
(
gm

2

)r1
ur1

2 vr2
2 , and sendsA toV.

U A−−−−−−−→ V

Step2:V sends a random numberb ∈ Z∗p toU.

U b←−−−−−−− V

Step3:U sends(c1, c2) toV such that

c1 = r1 + bt mod p,
c2 = r2 + bstmod p,

U c1,c2−−−−−−−→ V

Step4:V checks that(
gm

2

)c1
uc1

2 vc2
2 = Aβb

If it holds,V outputsaccept, otherwisereject.

4.4 Security

In this section, we refer to the security of our proposed
anonymous credential system.

4.4.1 Unforgeable
First, the security of signature scheme in our credential

issuing protocol is described in [10].

Property. If the (qs+ 1, t′, ϵ′)-SDH assumption holds in
(G1,G2), the signature scheme is(t,qs, ϵ′) -strongly-exsistentially-
unforgeable against adaptive chosen message attacks, pro-
vided that

ϵ ≥ 3qsϵ′, andt ≤ t′ − Θ
(
q2

sT
)

whereT is the maximum time for a single exponentiation in
G1, andG2.

This theorem allows us to use the signature scheme in
Section 3.2 under theq-SDH assumption.

Next, we refer to the unforgeability of the credential ver-
ification protocol of our system.

Theorem 1.If the signature scheme in our system is secure
under theq-SDH assumption,U cannot forge credentials
for whichV outputsaccept at the end of the credential
verification protocol.

Sketch of the proof.Credential verification protocol in our
system consists of three protocols of proving knowledge, as
described in Section 4.3. When these protocols are not se-
cure,U can forge(σ′, α, β) that satisfies the verifier’s equa-
tion. If U can forge such(σ′, α, β) without knowing the
original signature(σ, r, s), we can construct an extracterE.
E can use the forgerU as a black-box.

Let us focus on protocolPK{(t1, t2, t3) : γ = αt1gt2
2 ut3

2 }.
First, the protocol is executed once normally.V sendsb
and gets

c1 = r1 + bt1, c2 = r2 + bt2, c3 = r3 + bt3.

After the first execution of the protocol,E resetsU, and the
protocol is reexecuted.V then sendsb′ and gets

c′1 = r1 + b′t1, c
′
2 = r2 + b′t2, c

′
3 = r3 + b′t3.

E sees these executions of the protocol, and can calculate

t1 =
c′1 − c1

b′1 − b1
, t2 =

c′2 − c2

b′2 − b2
, t3 =

c′3 − c3

b′3 − b3
.

Now E succeeds in extracting(t1, t2, t3).
From PK{(ω, t3) : γ/wδ

2 = gω2 ut3
2 } and PK{(t, st) : β =(

gm
2

)t
ut

2vst
2 }, E can also extract(ω, t3) and(t, st) in the same

way, and can calculate(σ, r, s) from these extracted data.
This contradicts the security of the signature scheme in our
system.

ThusU cannot forge a credential(σ′, α, β) that satisfies
the verifier’s check, and our proposed system is unforge-
able.

4.4.2 Anonymity and Unlinkability
We now refer to the anonymity and unlinkability of our

system. The game described in Section 2.2.2 is used to as-
sess our system.Adv outputs public-key(g1,g2,w2,u2, v2).
U0 andU1 send the same data,m, to Adv, andAdv sends
credentials ofm (σ0, r0, s0) to U0, and(σ1, r1, s1) to U1.
U0,U1 andAdv then execute the protocols of proving knowl-
edge(Section 4.3) a polynomial number of times. Finally,
a randomd ∈ (0,1) is chosen, and protocols of proving
knowledge (Section 4.3) are executed amongUd andAdv a
polynomial number of times. At the end of the protocols,
Advmake a guess about numberd.

Theorem. Our system is anonymous and unlinkable.

Sketch of the proof. If the system is anonymous and un-
linkable, the protocols of proving knowledge are witness-
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indistinguishable; that is, in the game described in Section
2.2.2, the view of Step.3(a) and that of Step.3(b) are information-
theoretically independent. Namely, the system is anony-
mous and unlinkable ifAdv, upon receiving

(
σ′d, αd, βd

)
from

Ud in Step 3(b), cannot decide whether this triple data set
is generated from(σ0, r0, s0) or (σ1, r1, s1).

We cannot distinguish the distributions oft0 from that of
t1, because both of them are randomly chosen fromZ∗p. The
distributions ofθ0 andθ1 are also indistinguishable. Thus
Adv cannot distinguish between the distribution of

(
σ′d, αd, βd

)
generated from(σ0, r0, s0) and the distribution of

(
σ′d, αd, βd

)
generated from(σ1, r1, s1). That means our system has the
properties of anonymity and unlinkablity.

5 Performance Analysis

We turn now to the efficiency of our anonymous creden-
tial system. In our system, the size of public keys is 5
elements, and the size of secret keys is 1. The size of a
credential is 3 and the size of proving knowledge of cre-
dential is 3. The scheme based on LRSW assumptions[3]
has 4 public keys, 3 secret keys, 5 credentials, and 5 ele-
ments in proving knowledge. We consider here, the number
of operations in our scheme. The signature scheme uses
3 exponentials. Next, 2 pairings and 3 exponentials are
used to verify the signature, and 4 exponentials, 2 pairings,
and 3 proofs of knowledge of values are needed to prove
knowledge of a signature. The scheme based on LRSW
assumptions[3] has 5 exponentials to generate a signature,
10 pairings and 2 exponentials to verify the signature, and
5 exponentials, 10 pairings, and 4 proofs of knowledge of
values to prove knowledge of a signature. Our system is
superior to the scheme based on LRSW assumptions, con-
sidering efficiency.[3].

6 Conclusion

This paper introduces an anonymous credential system
that is more efficient than existing ones and is secure un-
der the q-SDH assumptions, which are non-interactive and
widely used in various schemes.
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