
All rights are reserved and copyright of this manuscript belongs to the authors.
This manuscript has been published without reviewing and editing as received
from the authors: posting the manuscript to SCIS 2007 does not prevent future
submissions to any journals or conferences with proceedings.

SCIS 2007 The 2007 Symposium on
Cryptography and Information Security

Sasebo, Japan, Jan. 23-26, 2007
The Institute of Electronics,

Information and Communication Engineers

An Optimistic Fair Exchange Protocol and its Security in the
Universal Composability Framework

Yusuke Okada ∗ Yoshifumi Manabe † Tatsuaki Okamoto †

Abstract— Fair exchange protocols allow two parties to either each party gets the other’s item
or neither party does, and this property is essential in e-commerce. In this paper, we define the ideal
functionality of the fair exchange protocol in the universal composability framework, and present an
optimistic fair exchange protocol that is secure in this framework.

Keywords: optimistic fair exchange protocols, digital signatures, universal composition.

1 Introduction

Fair exchange is an essential property in e-commerce,
and various protocols have been proposed to realize
fair exchange such as gradual secret exchange [10, 12],
non-repudiation [14, 15], and optimistic fair exchange.
Optimistic fair exchange protocols allow two involved
parties to either each party get the other’s item or nei-
ther party does where a Trusted Third Party (TTP) is
not invoked when two involved parties perform the pro-
tocol correctly. This kind of protocol is more practical
than the protocols in which TTP mediates all transac-
tions. Many approaches have been taken to realize this
kind of protocol [1, 2, 3, 9, 11, 13].

In this paper, we attempt to prove the security of
optimistic fair exchange protocols in the universal com-
posability framework, which was proposed by Canetti
[5]. This framework provides a unified methodology for
proving the security of various protocols. Furthermore,
in the universal composability framework, it is guaran-
teed that a secure primitive maintains its security even
if other primitives run concurrently. Since optimistic
fair exchange protocols use many primitives such as
digital signatures, secure channels and certificate au-
thorities, this property is quite helpful. The optimistic
fair exchange protocol proposed in [11] can use any se-
cure digital signature, so it is easy to handle within the
universal composability framework by using the hybrid
protocol.

2 Preliminaries

2.1 The universal composability framework

The universal composability, proposed by Canetti
[5], is a general framework for analyzing the security
of cryptographic protocols. In this framework, the se-
∗ Department of Social Informatics, Graduate School of Infor-

matics, Kyoto University, Yoshidahonmachi, Sakyo-ku, Kyoto-
shi, Japan. E-mail: yokada@ai.soc.i.kyoto-u.ac.jp

† NTT Laboratories, NTT Corporation, 1-1 Hikarino-
oka, Yokosuka-shi, Japan. E-mail: {manabe.yoshifumi,
okamoto.tatsuaki}@lab.ntt.co.jp

curity of protocols is defined via comparing the process
of the execution of two protocols, a real process and an
ideal process.

In the real process, the multi-party protocol is ex-
ecuted in a given environment in the presence of the
adversary that controls the communication among the
parties and can corrupt the parties. In the ideal pro-
cess, there exists the ideal functionality that captures
the desired functionality for carrying out the task and
performs as a subroutine of multiple parties. The par-
ties in the ideal protocol, called dummy parties , for-
ward input from the environment to the ideal function-
ality and back directly.

The environment, representing all the other proto-
cols running in the system, passes input to and obtains
output from the parties and the adversary, outputs a
single bit finally, attempting to distinguish with which
protocol it interacts. A protocol π is said to UC-realize
an ideal functionality F if for any adversary A there
exists an ideal process adversary S (we often call the
adversary S a simulator) such that no environment Z
can tell whether it is interacting with π and A or with
IDEALF , ideal protocol for F and S.

We use the following notation defined in [5]. Let
EXECπ,A,Z(k, z) represent the Z’s output after inter-
acting with π and A, given the security parameter k
and input z. Let EXECπ,A,Z represent the ensemble
{EXECπ,A,Z(k, z)}k∈N,z∈{0,1}∗ .

2.2 Optimistic fair exchange protocols

In this paper, we consider exchange protocols where
two involved parties exchange a digital signature for
digital data. For example, Alice purchases digital data
(e.g., music files, license keys) from Bob in exchange
for her digital signature on the purchase contract.

We proposed a protocol in [11] that realizes opti-
mistic fair exchange in such cases. We describe here a
brief overview of the optimistic fair exchange protocol.
First, we define three types of signatures, pre-signature,
post-signature, and notarized signature, by prescribing
the form of the signatures. Pre-signature is Alice’s sig-

1

nature on the concatenation of the purchase contract,
Alice’s public key certificate, TTP’s public key certifi-
cate and the parameter that represent the expiration
date of the pre-signature. Post-signature is Alice’s sig-
nature on the concatenation of the purchase contract
and Alice’s public key certificate. Notarized signature
is TTP’s signature on Alice’s pre-signature.

We define both post-signature and notarized signa-
ture as legally valid signatures. On the other hand, the
pre-signature is defined as a legally invalid signature.
TTP has the power to transform Alice’s pre-signature
into a notarized signature that has the same legal value
as a post-signature.

In the protocol, we assume the data transactions are
executed over secure channels. The protocol is as de-
scribed below.

The main protocol

1. Alice sends her pre-signature to Bob.

2. Bob verifies the pre-signature and its expiration
date. If invalid, Bob aborts the protocol. Else,
Bob sends his digital data to Alice.

3. Alice verifies it. If invalid, she aborts the proto-
col. Else, Alice sends her post-signature to Bob.

4. Bob verifies the post-signature. If invalid or Bob
doesn’t get it by the expiration date of her pre-
signature, then Bob invokes the dispute resolu-
tion protocol. Else, the exchange protocol ends
correctly.

The dispute resolution protocol

1. Bob initiates the protocol. He sends Alice’s pre-
signature to TTP along with his digital data.

2. TTP verifies them. If either one of them is in-
valid, TTP aborts the protocol. Else, TTP sends
the notarized signature to Bob, and Bob’s digital
data to Alice.

In this paper, we construct a hybrid protocol based
on this protocol, slightly modifying it to make it eas-
ier to handle within the universal composability frame-
work.

3 The fair exchange functionality

To prove the security of the protocol in the univer-
sal composability framework, we must define the ideal
functionality of the protocol first. Fair exchange is a
task where two parties interact such that either gets
the other’s item or neither does. Here, we consider the
case that parties A and B exchange a digital signature
on MA for digital data MB .

The fair exchange functionality, F (propA, propB , verify)
FE

is shown in Figure 1. Two functions propA : {0, 1}∗ →
{0, 1} and propB : {0, 1}∗ → {0, 1} capture the ver-
ification of MA and MB , respectively. The function
verify(·) captures the signature verification function.
Since this function may depend on the composition of

the protocol, we will describe the definition of verify(·)
in Section 4.

The functionality shown in Figure 1 captures the fair
exchange task, not just the optimistic one. Party T
(this party, representing TTP , appears in the real pro-
tocol) does not appear explicitly in the ideal protocol
for this functionality. Instead, the functionality itself
plays the role of TTP . This difference between the
ideal and real protocol poses no problem because there
is no input and subroutine output from Z to T and
back in either protocol.

Functionality F (propA, propB , verify)
FE

1. Upon receiving input (Initiate, sid,MA) from
party A, verify that sid = (A,B, sid′) for some
party B and propA(MA) = 1. If not, ignore
this input. Else, send (Initiate, sid,MA) to the
adversary. Upon receiving ok from the adver-
sary, record the entry (A,B, MA), generate out-
put (Initiated, sid) to B.

2. Upon receiving input (Send, sid,MB) from B,
verify that there exists an entry (A,B, MA) and
propB(MB) = 1. If not, ignore this input. Else,
send (Sent, sid, |MB |) to the adversary. Upon
receiving (Signature, sid,MA, σA) from the ad-
versary, check whether verify(MA, σA) = 1. If
not, ignore the input. Else, record the entries
(A,B,MA, σA) and (B, A,MB), generate output
(Sent, sid,MB) to A.

3. Upon receiving (Get, sid) from B, verify that
there exist two entries (A,B, MA, σA) and
(B, A,MB). If not, ignore this input. Else,
send (Get, sid) to the adversary. Upon re-
ceiving ok from the adversary, generate output
(Sent, sid,MA, σA) to B.

Figure 1: The fair exchange functionality,
F (propA, propB , verify)

FE .

4 Protocol πOFE in the (FSIG,FREG,FSCS)-
hybrid model

In this section, we present a hybrid protocol for re-
alizing F (propA, propB , verify)

FE , given the ideal function-
alities FSIG, FREG, and FSCS. The protocol πOFE is
shown in Figure 2. Party T represents a trusted third
party, which is guaranteed not to be corrupted by the
adversary.

In this protocol, we use three types of signatures:
σpre, σpost and σTTP . We define mpre as the concate-
nation of (MA, A, T) and mpost as the concatenation
of (MA, A), where A and T represent the respective
IDs. σpre and σpost represent A’s signature on mpre

and mpost, respectively. σTTP represents T ’s signa-
ture on σpre. Here, we define both σpost and σTTP

as legally valid signatures, so Bob expects to receive
either σpost or σTTP . In protocol πOFE, verify(·) in

2

F (propA, propB , verify)
FE is defined as the function that

returns 1 iff vA(mpost, σpost) = 1 ∨ (vA(mpre, σpre) =
1 ∧ vTTP (σpre, σTTP) = 1).

In Figure 2, step 2(e) corresponds to the resolution
protocol. When neither A nor B is corrupted, party
A correctly outputs (Sent, sid,MB) in step 2(d) and
goes to step 3, because all messages between A and B
are sent and received by using FSCS. There are two
cases in which the resolution protocol is executed. One
is the case where party A is corrupted by the adversary
and instructed to send invalid σ′post. The other is the
case where party B is corrupted and instructed to send
invalid M ′

B . In this case, A enters the waiting state and
goes to step 2(e). The adversary can instruct corrupted
B to send resolve message to T .

The ideal functionalities FSIG, FREG, and FSCS

This hybrid protocol uses three ideal functionalities:
FSIG, FREG, and FSCS. We describe here the ideal
functionalities FSIG, FREG, and FSCS defined by Canetti
[5] in Figures 3, 4, and 5, respectively. We slightly mod-
ify FREG from the original one in [5]. The modified reg-
istration functionality sends output (Registered, sid, v)
to the party in order to clearly specify the activation
of the key registering party.

Functionality FSIG

Key Generation: Upon receiving a value
(KeyGen, sid) from some party S, ver-
ify that sid = (S, sid′) for some sid′. If
not, then ignore the request. Else, hand
(KeyGen, sid) to the adversary. Upon receiving
(Algorithms, sid, s, v) from the adversary,
where s is a description of a PPT ITM, and v is
a description of a deterministic polytime ITM,
output (Verification Algorithm, sid, v) to S.

Signature generation: Upon receiving a value
(Sign, sid,m) from S, let σ = s(m), and
verify that v(m,σ) = 1. If so, then output
(Signature, sid,m, σ) to S and record the entry
(m,σ). Else, output an error message to S and
halt.

Signature Verification: Upon receiving a value
(Verify, sid,m, σ, v′) from some party V , do: If
v′ = v, the signer is not corrupted, v(m,σ) = 1,
and no entry (m,σ′) for any σ′ is recorded, then
output an error message to S and halt. Else, out-
put (Verified, sid, m, v′(m,σ)) to V .

Figure 3: The signature functionality, FSIG.

5 The security of the protocol

Theorem 1 Protocol πOFE UC-realizes fair exchange
functionality F (propA, propB , verify)

FE in the (FSIG,FREG,
FSCS)-hybrid model.

Proof: Let A be an adversary in the real protocol and
SHYB be a hybrid protocol simulator that interacts with

Functionality FREG

1. Upon receiving input (Register, sid, v), verify
that sid = (P, sid′). If sid′ is not of that form,
or this is not the first input from P , then ignore
this input. Else, send (Registered, sid, v) to the
adversary and record the value v. Then, send
(Registered, sid, v) to P .

2. Upon receiving input (Retrieve, sid) from party
P ′, send a delayed output (Retrieve, sid, v) to
P ′. (If no value v is recorded, then set v =⊥.)

Figure 4: The registration functionality, FREG.

Functionality FSCS

FSCS proceeds as follows, when parameterized by the
leakage function l : {0, 1}∗ → {0, 1}∗.

1. Upon receiving input (Establish-Session, sid)
from party I, verify that sid = (I, R, sid′) for
some R, record I as active, record R as the
responder, and send a public delayed output
(Establish-Session, sid) to R.

2. Upon receiving (Establish-Session, sid) from
party R, verify that R is recorded as the respon-
der, and record R as active.

3. Upon receiving input (Send, sid, m) from party
P ∈ {I,R}, send (Sent, sid, P, l(m)) to the ad-
versary. In addition, if P is active then send a pri-
vate delayed output (Sent, sid, P,m) to the other
party in {I,R}.

Figure 5: The secure communication session function-
ality, FSCS.

parties running πOFE in the (FSIG,FREG,FSCS)-hybrid
model. SHYB runs an internal copy of A as a black box,
forwards any input from Z to A and vice versa.

Here, we assume that for any A there exists SHYB

such that EXECπ,A,Z ≈ EXECπOFE,SHYB,Z for any en-
vironment Z.

We now construct a simulator S such that the view
of the environment Z when interacting with SHYB and
πOFE has the same distribution as Z when interacting
with S and the ideal protocol for FFE. That is, for
any SHYB there exists S such that EXECπOFE,SHYB,Z ≈
EXECIDEALF ,S,Z for any environment Z.
S runs an internal copy of SHYB as a black box, for-

wards any input from Z to SHYB and vice versa. S also
runs an internal copy of each of the involved parties,
and simulates FSIG, FREG, and FSCS.

We now describe the behavior of S.

The case where no party is corrupted. When
S receives (Initiate, sid, MA) from FFE, where sid =
(A,B, sid′), it proceeds as follows:

1. S simulates the processes of key generation and
registration. It sends to SHYB (in the name of

3

Protocol πOFE in the (FSIG,FREG,FSCS)-hybrid model

1. When activated with input (Initiate, sid,MA), do:

(a) A verifies that sid = (A, B, sid′) for some party B. If not, ignore the input. Else, it sends to FSIG

the message (KeyGen, sidA) where sidA = (A, sid), and obtains (Verification Algorithm, sidA, vA).
Next, A sends (Register, sidA, vA) to FREG, and obtains (Registered, sidA, vA).

(b) A sends to FSIG the message (Sign, sidA,mpre) where mpre = (MA, A, T), and obtains
(Signature, sidA,mpre, σpre). A then sends (mpre, σpre) to B by using FSCS.

(c) Upon receiving (mpre, σpre), B verifies that propA(MA) = 1. If not, B halts. Else, B sends
(Retrieve, sidA) to FREG, and obtains (Retrieve, sidA, vA) from FREG.

(d) B sends (Verify, sidA,mpre, σpre, vA) to FSIG, and obtains (Verified, sidA,mpre, vA(mpre, σpre)). If
vA(mpre, σpre) = 1, B outputs (Initiated, sid). Else, B halts.

2. When activated with input (Send, sid, MB), do:

(a) If vA(mpre, σpre) = 1, B sends MB to A by using FSCS. Else, it halts.

(b) Upon receiving MB , A verifies that propB(MB) = 1. If not, go to step(e). Else, A sends to FSIG the
message (Sign, sidA,mpost) where mpost = (MA, A), and obtains (Signature, sidA,mpost, σpost) from
FSIG.

(c) A sends (mpost, σpost) to B by using FSCS.

(d) Upon receiving (mpost, σpost), B sends (Verify, sidA, mpost, σpost, vA) to FSIG, and obtains
(Verified, sidA,mpost, vA(mpost, σpost)). If vA(mpost, σpost) 6= 1, go to step(e). Else, B sends
(Verified, sid) to A by using FSCS, and A outputs (Sent, sid,MB).

(e) B sends (Resolve, sid, (mpre, σpre),MB) to T by using FSCS,

i. Upon receiving (Resolve, sid, (mpre, σpre),MB), T sends (Retrieve, sidA) to FREG, and obtains
(Retrieve, sidA, vA). It then sends (Verify, sidA,mpre, σpre, vA) to FSIG.

ii. Upon receiving (Verified, sidA,mpre, vA(mpre, σpre)) from FSIG, T verifies that vA(mpre, σpre) = 1
and propB(MB) = 1. If not, it halts. Else, it sends to FSIG the message (KeyGen, sidT)
where sidT = (T, sid), and obtains (Verification Algorithm, sidT , vT). Next, it sends
(Register, sidT , vT) to FREG, and obtains (Registered, sidT , vT).

iii. T sends (Sign, sidT , σpre) to FSIG, and obtains (Signature, sidT , σpre, σTTP).
iv. T sends MB to A by using FSCS.
v. Upon receiving MB , A outputs (Sent, sid,MB).

3. When activated with an input (Get, sid), do:

(a) If B has obtained (mpost, σpost) where vA(mpost, σpost) = 1, it outputs (Sent, sid,MA, σpost).

(b) Else, B sends (Get, sid) to T by using FSCS. Upon receiving (Get, sid), T sends σTTP to B by using
FSCS. Upon receiving σTTP , B outputs (Sent, sid,MA, (σpre, σTTP)).

Figure 2: Protocol πOFE in the (FSIG,FREG,FSCS)-hybrid model.

4

FSIG) the message (KeyGen, sidA), and obtains
(Verification Algorithm, sidA, sA, vA).

It then sends (Verification Algorithm, sidA, vA)
to simulated A. Next, it sends (Registered, sidA,
vA) to SHYB and simulated A.

2. S simulates the processes of signature generation
and the sending of (mpre, σpre). It sends to SHYB

(in the name of FSCS) the message (Establish-
Session, sid), obtains ok from SHYB, and sends
(Establish-Session, sid) to simulated B. Next,
it sends to SHYB the message (Sent, sid, |(mpre,
σpre)|). Upon receiving ok from SHYB, it sends
(Sent, sid, (mpre, σpre)) to simulated B.

3. S simulates the processes of key retrieval and sig-
nature verification. It sends to SHYB (in the name
of FREG) the message (Retrieve, sidA, vA). Upon
receiving ok from SHYB, it sends (Retrieve, sidA,
vA) to simulated B. Then, S sends ok to FFE.

When S receives (Send, sid, |MB |) from FFE, it pro-
ceeds as follows:

1. S simulates the process of sending MB . It sends
to SHYB (in the name of FSCS) the message (Sent,
sid, |MB |), and receives ok from SHYB.

2. S simulates the processes of the signature genera-
tion and the sending of (mpost, σpost). It sends to
SHYB (in the name of FSCS) the message (Sent,
sid, |(mpost, σpost)|). Upon receiving ok from SHYB,
it sends (Sent, sid, (mpost, σpost)) to simulated B.

3. S simulates the process of sending the verification
message (Verified, sid). It sends to SHYB (in
the name of FSCS) the message |(Verified, sid)|.
Upon receiving ok from SHYB, it sends (Signature,
sid,MA, σpost) to FFE.

When S receives (Get, sid) from FFE, S sends (Send,
sid, (mpost, σpost)) to FFE, since there is no party cor-
ruption.

In this case, S can perform the simulation perfectly.
That is, the view of the environment Z when interact-
ing with SHYB and πOFE has the same distribution as
of Z when interacting with S and the ideal protocol for
FFE.

Next, we construct S assuming party corruption.
Since all messages are sent by using FSCS in πOFE, it
is only necessary to consider the case that A instructs
a corrupted party to send modified data to FSCS. The
cases in which A instructs a corrupted party to register
modified key to FREG or instructs a corrupted party to
sign a modified message by FSIG are similar to the case
above.

Simulating party corruption. To simulate party
corruption, S has to simulate the current local state of
the corrupted party. S knows the secret keys of the
parties, so it can clearly provide A with the local state
of the corrupted party except MB . When black box A
sends corruption message to party A, S (simulating for

corrupted A) must send MB to A after simulating B’s
sending of MB .

The case where party A is corrupted. When A
instructs corrupted A to send (Send, sid, (m′

pre, σ
′
pre))

to FSCS, S proceeds as follows:

1. S sends (Sent, sid, |(m′
pre, σ

′
pre)|) to SHYB in the

name of FSCS. Upon receiving ok from SHYB, S
sends (Sent, sid, (m′

pre, σ
′
pre)) to simulated B in

the name of FSCS.

2. Next, S simulates the process of signature verifi-
cation. S sends (Verified, sidA,m′

pre, vA(m′
pre,

σ′pre)) to simulated B in the name of FSIG. If
vA(m′

pre, σ
′
pre) = 1, S sends ok to FFE.

When A instructs corrupted A to send (Send, sid,
(m′

post, σ
′
post)) to FSCS, simulated S proceeds as fol-

lows:

1. S sends (Sent, sid, |(m′
post, σ

′
post)|) to SHYB in

the name of FSCS. Upon receiving ok from SHYB,
S sends (Sent, sid, (m′

post, σ
′
post)) to simulated B

in the name of FSCS.

2. Next, S simulates the process of signature verifi-
cation. S sends (Verified, sidA,m′

post, vA(m′
post,

σ′post)) to simulated B in the name of FSIG. If
vA(m′

post, σ
′
post) = 1, S simulates in the same way

as the case where the parties are not corrupted.

3. Else, S simulates the process of resolution phase.
S sends (Sent, sid, |((mpre, σpre),MB)|) to SHYB

in the name of FSCS. Upon receiving ok from
SHYB, S sends (Sent, sid, ((mpre, σpre),MB)) to
simulated T . Next, S simulates the processes
of the signature generation of T . S then sends
(Sent, sid, |MB |) to SHYB. Upon receiving ok
from SHYB, S sends (Sent, sid, MB) to corrupted
A, and sends (Signature, sid, MA, (σpre, σTTP))
to FFE.

4. Upon receiving (Get, sid) from FFE, S simulates
the process of B getting T ’s signature. S sends
(Sent, sid, |(Get, sid)|) to SHYB in the name of
FSCS. Upon receiving ok from SHYB, S sends
(Sent, sid, (Get, sid)) to T .

Next, S sends |(Signature, sidT , σpre, σTTP)| to
SHYB. Upon receiving ok from SHYB, S sends
ok to FFE.

The case where party B is corrupted. When A
instructs corrupted B to send (Send, sid, M ′

B) to FSCS,
S proceeds as follows:

1. S sends (Send, sid, |M ′
B |) to SHYB in the name

of FSCS. Upon receiving ok from SHYB, S sends
(Send, sid,M ′

B) to simulated A. If propB(M ′
B) =

1, S simulates in the same way as the case where
parties are not corrupted.

2. Else, ifA instructs corrupted B to send (Resolve,
sid, (mpre, σpre), MB) to FSCS, S simulates the
process of resolution phase. Simulated A finally

5

receives (Sent, sid, MB), and S then sends (Sig-
nature, sid,MA, (σpre, σTTP)) to FFE.

3. When corrupted B sends (Get, sid) to FSCS, S
simulates the process of B getting T ’s signature.
S finally sends (Signature, sidT , σpre, σTTP) to
simulated B, and sends ok to FFE.

6 Conclusion

In this paper, we defined the fair exchange func-
tionality F (propA, propB , verify)

FE in the universal com-
posability framework and presented an optimistic fair
exchange protocol that UC-realizes this functionality
in the (FSIG,FREG,FSCS)-hybrid model.

References

[1] N. Asokan, V. Shoup, and M. Waidner. Optimistic
fair exchange of digital signatures. IEEE Journal
on Selected Areas in Communication, volume 18,
No. 4, pages 593-610, 2000.

[2] G. Ateniese. Efficient verifiable encryption (and
fair exchange) of digital signatures. In Proceedings
of the 6th ACM conference on Computer and com-
munications security, pages 138-146, 1999.

[3] F. Bao, R. Deng, and W. Mao. Efficient and prac-
tical fair exchange protocols with off-line TTP. In
Proceedings of the IEEE Symposium on Security
and Privacy, pages 77-85, 1998.

[4] D. Boneh, C. Gentry, B. Lynn, and H. Shacham.
Aggregate and verifiably encrypted signatures
from bilinear maps. In Advances in Cryptology -
EUROCRYPT 2003, volume 2656 of Lecture Notes
in Computer Science, pages 416-432. Springer-
Verlag, 2003.

[5] R. Canetti. Universally composable security: A
new paradigm for cryptographic protocols. In
Proceedings of the 42nd Foundations of Com-
puter Science conference, 2001. Full version at
http://eprint.iacr.org/2000/067/.

[6] R Canetti. Universally composable signature,
certification, and authentication. 17th Com-
puter Security Foundations Workshop, 2004.
http://eprint.iacr.org/2001.

[7] R Canetti, H Krawczyk. Universally composable
notions of key exchange and secure channels. In
Advances in Cryptology - EUROCRYPT 2002,
volume 2332 of Lecture Notes in Computer Sci-
ence, pages 337-351. Springer-Verlag, 2002.

[8] R. Canetti and T. Rabin. Universal composition
with joint state. CRYPTO 2003, volume 2729 of
Lecture Notes in Computer Science, pages 265-
281. Springer-Verlag, 2003.

[9] Y. Dodis and L. Reyzin. Breaking and repairing
optimistic fair exchange from PODC 2003. In Pro-
ceedings of the 2003 ACM workshop on Digital
rights management. pages 47-54, 2003.

[10] S. Even, O. Goldreich, and A. Lempel. A random-
ized protocol for signing contracts. Communica-
tions of the ACM, volume 28, No. 6, pages 637-
647, 1985.

[11] Y. Okada, Y. Manabe and T. Okamoto. Optimistic
fair exchange protocol for E-Commerce. The Sym-
posium on Cryptography and Information Secu-
rity, 2006.

[12] T. Okamoto and K. Ohta. How to simultane-
ously exchange secrets by general assumptions.
In Proceedings of 2nd ACM Conference on Com-
puter and Communications Security, pages 184-
192, 1994.

[13] J. M. Park, E. Chong, and H. J. Siegel. Con-
structing fair-exchange protocols for E-commerce
via distributed computation of RSA signatures. In
Proceedings of the twenty-second annual sympo-
sium on Principles of distributed computing, pages
172-181, 2003.

[14] J. Zhou and D. Gollmann. A fair non-repudiation
protocol. In Proceedings of the 1996 IEEE Sympo-
sium on Security and Privacy, pages 55-61, 1996.

[15] J. Zhou, D. Gollmann, An efficient non-
repudiation protocol. In Proceedings of the 10th
IEEE Computer Security Foundations Workshop,
pages 126-132, 1997.

6

