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Abstract— This paper presents an off-line anonvmous e-cash scheme, that is secure under the

strong RSA assumption and the strong Diffie-Hellman (SDH) assumption. A user can withdraw a
wallet containing 2! coins, each of which she can spend unlinkably. The complexity of the withdrawal
operation is O(k?*), the spend operation is Q(k?), where k is security parameter. The user’s wallet can

be stored using O(k) bits. Our scheme also offers exculpability of users, that is, the bank can prove to
third parties that a user has double-spent. Our scheme is secure in the random oracle model.
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1 Introduction

1.1 Background

Electronic cash was proposed by Chaum [2][3], and
has been extensively studied [4][5][6][7][8][9][10][11]
[12][13].

As a coin is represented by data, and it is easy to du-
plicate data, an electronic cash scheme requires a mech-
anism that prevents a user from spending the same
coin twice (double-spending). There are two scenar-
ios. In the on-line scenario, the bank is on-line in each
transaction to ensure that no coin is spent twice, and
each merchant must consult the bank before accepting
a payment. In the off-line scenario, the merchant ac-
cepts a payment antonomously, and later submits the
payment to the bank; the merchant is guaranteed that
such a payment will be either honored by the bank,
or will lead to the identification (and therefore punish-
ment) of the double-spender.

In this paper, we give an off-line 2!-spendable unlink-
able electronic cash scheme. Our framework is based
om [15] by Camenisch.

1.2 Our Result

This paper proposes a new efficient unlinkable off-
line electronic cash scheme secure in the random oracle
model. The security proof of our scheme depends on
the strong RSA assumption and the strong SDH as-
sumption.

2 Preliminaries

2.1 Definition of Off-line E-Cash System

Our electronic cash scenario consists of three usual
players: the user:ld, the bank:B, and the merchant: M;
together with the algorithms: BKeygen,UKeygen,
MKeygen, Withdraw,5pend,Deposit, ldentify, Trace and
VerifyOwnership.
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¢ BKeygen is a key generation algorithm for the
bank B. It takes as input %k bit security parame-
ter, and oufputs the key pair, (pkg,skg).

e UKeygen is a key generation algorithm for the
user I{. It takes as input & bit security parameter,
and outputs the key pair, (pky,sky).

e Withdraw is a protocol between U and B. U
withdraws a 2' unit wallet:WW with serial num-
ber S. I{ sends signature Q to 5. B records @ in
database:D to trace users double spending some
coin. i receives B’s signature.

e Spend is a protocol between U and M. I sends
zero-knowledge proof of knowledge of W:P to M.

e Deposit is a protocol between M and B. M sends
P to B. B verifies @. If the coin has been received
already, B rejects . Otherwise, B accepts it.

s ldentify iz an algorithm to find double-spender L4’
from double spent coin ®4,%5.

e Trace is an algorithm to output evidence:IT which
B computes from ®4,P2 and D to be used in the
VerityOwnership step.

e VerifyOwnership is an algorithm to confirm that
4" certainly spent coin ®,,$5. Anyone can verify
double spent coin with serial number S using II.

2.2 Definition of Security
2.2.1

Adversary A plays the following game:

A executes the Withdraw and Deposit protocols with
the bank as many times as desired. (It can simulate
running the Spend protocol with itself.)

A wins the game if the honest bank accepts a coin
which differs from any coin got through the Withdraw
protocol.

No probabilistic polynominal-time adversary succeeds
in this game with non-negligible probability.
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2.2.2 Identification of double-spenders

Adversary A plays the following game:

A executes the Withdraw and Spend protocols with
the bank as many times as desired.

A wins the game if the honest merchant cannot out-
put A’s secret key when A uses multiple coins with the
same serial number,

No probabilistic polynominal-time adversary succeeds
in this game with non-negligible probability.

2.2.3 Trace of double-spenders

Adversary A plays the following game:

A executes the Withdraw and Spend protocols with
the bank as many times as desired.

A executes Spend protocols, the honest merchant ac-
cepts double spent coins (S, ®,),(S, ®3). The bank out-
puts (S, II) by Trace.

A wins the game if S # 5’ or VerifyOwnership( S, IT)
returns reject.,

No probabilistic polynominal-time adversary succeeds
in this game with non-negligible probability.

2.2.4 Anonymity of users

Adversary A plays the following game:

A sets pkg,skg. Honest users Uy, Uy execute the
withdraw protceol, and get wallet Wy, W, respectively.

One of Uy and Uy is now selected randomly, say .
Iy, executes the spend protocol. A outputs & = 0 or 1.

Adv " = 2Prh = b — 1

No probabilistic polynominal-time adversary’s

Advf‘“"“ymﬂy is non-negligible probability.

2.2.5 Exculpability

Exculpability guarantees that only users who really
are guilty of double spending are convicted of double
spending.

Adversary A plays the following game:

A sets pkg,skg. An honest I executes withdraw and
spend protocols as many times as A wishes.

A wins the game if A outputs (S,11) of user If such
that
VerifyOwnership(S, IT) returns accept.

No probabilistic polynominal-time adversary succeeds
in this game with non-negligible probability.

2.3 Bilinear Maps

Let (31, Gg) be two cyclic groups of prime order p,
where possibly (z; = (4. gy is a generator of (z; and
g2 is a generator of (s, ¢ is an isomorphism from Go
to =y, with 14(gs). e is a non-degenerate bilinear map.
e : Gy x Gy = Gy, where |G| = |Gs| = |G3| = p, ie.,

¢ (Bilinear): for all u € Gy, v € Gg, forall a,b € Z,
e(u®,v?) = e(u, v)*®

e (Non-degenerate): e(gy,g2) # 1 (i.e.,e(gy,g2) is
a generator of Gr).

o (Efficient): e, and the group in Gy, Gy and G
can be computed efficiently.

2.4 Verifiable Encryption

In Section 4.2, we apply a technique by Camenisch
and Damgard [14] for turning any semantically secure
encryption scheme into a verifiable encryption scheme.
A verifiable encryption scheme is a two-party protocol
between a prover and encryptor I and a verifier and
receiver B.

In the follwing, a verifiable encryption of a commit-
ted value is shown, in which ElGamal encryption is
applied for keys using bilinear maps.

2.4.1 Encryption and Decryption

q € (31 and g, f, h € Gs are public data. If randomly
chooses u € Z; and computes e(g, g") = (g, g)". (pk,sk) =
(e(g,9)", g"). Let m be the plainfext and ¢ the cypher-
fext.

Encrypt : U randomly chooses k € Z7.
¢ i= (c1.e2) = (3, pi*m).
Ca
Decrypt : = ————
. e(c1, g*)

2.4.2 A Verifiable Encryption Scheme

A= " f'h? is a commitment to 5. E(s) := (ea, ca1l|caz]|cas)
is an encryption of 5. i randomly chooses rq,ro, ra, k1, ks €
Zy. U computes

X = ﬁﬁ f"ﬂﬁra
ci1 = r1+umod p
c12 = o+t mod p
g = '3+ 8 mod P
oy = 11 + 2u mod p
can = 1o+ 2t mod p
cog = T3+ 28 mod p
e1 = e(g", p™ (e11]|erz||e1a)
— =fin ko
ea = e(g %, pi *(e21]|e2zl|c2a))
and sends (X, e1,e3) to B.
B returns to a = {1 or 2} randomly.
U sends (cy1, oo ky) to V. Let @ = {1 if a = 2,2 if
a=1}.
B verifies

Eq = Eﬁkﬂ: F'I-«:kEl (E{L].H{:{LEHE{JLE)}
.&L'E]_ fc:ﬂ:, htas — X AT
E(s) = (ea,Cai||ca2||cas)
By decripting ez, B obtains cs,, ¢a,, and caz, and cal-
culates s by 8 := cag — ¢13 mod p.

This protocol is repeated k times, I{ succeds in cheat-
ing B with probability EIE

2.5 Committed Number Lies in an Interval

In Section 4.3, we apply a technique proposed by
Boudot [1] to prove Committed Number:J belongs to
[0,2"). This requires the strong RSA assumption.

2.6 Signature Scheme

In Section 4.2, 4.3, 4.7, we apply a signature scheme
proposed by Okamoto [16] to achieve anonymity and
traceability.



2.6.1 Key generation

Randomly select generators gz, us,ve € (32 and set
g1 iga), uy + Pluz) and vy + t(ve). Randomly
select x € Zj, and compute wa ¢ g2® € G2. The public
and secret keys are:

Public kE:-,F L g1 g, Wy, Uy, V2,
Secret key : x

2.6.2 Signature generation

Let m € Z; be the message to be signed. Signer &
randomly selects r and s from Z7, and computes

a [glmuw]sjﬁ .

(o, 7, 8) is the signature of m.

2.6.3 Signature verification

Given public-key (g1, g2, w2, #2, v2), message m, and
signature (o,r,s), check that m,r,s € Z7, o € Gy,
o # 1, and

elo,woge”) = e(gy, g2 M uge”) .

If they hold, the verification result is valid; otherwise
the result is invalid.

2.6.4 Definition of Secure Signature Schemes

In this section we recall the standard notion of se-
curity, existential unforgeability against chosen mes-
sage attacks [17] as well as a slightly stronger notion
of security for a signature scheme, strong existential
unforgeability against chosen message attacks [18]. To
define existential unforgeability, we introduce the fol-
loing game among adversary A and honest signer S.

1. Key setup:
Run key generation algorithm G(1") to obtain
a pair of public-key and secret-key (pk,sk). pk
is given to adversary .4, and (pk,sk) is given to
signer &.

2. Queries to signing oracle:
A adaptively requests § (or signing oracle) to sign
on at most g, message of his choice mq,...,m,,,
S responds to m; with a signature o; = S(sk, m;)

3. Output:
Eventually, A outputs pair (m.s). A wins the
game if m is not any of m(i = 1,...,q.) and
V(pk,m,o) = accept. We define Adv’"/”® to
be the probability that A wins the above game,
taken over the coin tosses made by A, G and §.

Definition: (Existential Unforgeability) Adversary
Alt, qs, €)-forges a signature scheme if A runs in time
at most t. A makes at most g, queries to &, and
Advi™ "9 is at least e. A signature scheme is (£, g, €)—
existentially-un forgeable under adaptive chosen mes-

sage attacks if no adversary A(t, g, €)- forges the scheme.

3 Assumptions

3.1 Strong RSA Assumption:

Given an RSA module n and a random element g
£y, it is bard to compute h € Z} and integer ¢ > 1
such that h® = g mod n. The module n is of special
form pq, where p = 2p’' 4+ 1 and q = 2q’ + 1 are safe
primes,

3.2 Strong Diffie-Hellman (SDH) Assumption:

Let (31, ) be bilinear groups. The g-SDH problem
in (lz1,G2) is defined as follows: given the (g + 2)-
1

e

tuple (g1, g2, 95, . . . ?g‘grq} as input, output pair {gl ,c)
where ¢ E;i Algorithm A has advantage, Advspg(q),

1
in solving ¢-SDH in (g7, ¢) if

1

AdV,‘H’DH(Q] — PT[A[QLEE:Q%:---':Q:IE] = {glmTG!c}]

Adversary A (1, €)-breaks the ¢-SDH problem if A runs
in time at most ¢ and Advgpy(g) is at least e. The
(g,1,e)-SDH assumption holds if no adversary A (t, €)-

breaks the ¢-SDH problem.

4 Proposed E-cash System

4.1 Key Generation

H(x) is a collision-resistant hash function.

Bank: Upon input of security parameter. B ran-
domly generates )
{g.f.hovp,up} € Go and set § « w(g), f « ¥(f),
h = ab(h), G + P(vy), Wy + (wy). Randomly selects
b € Zj, and computes ry + g’ up +— fooz — bt B’s
public key pye and secrets key s.g are:
pke = 1G9, f. [ Iy b, T, vy, 10y, wh, To, Yp, 26}, Ske = {b}.

User: U randomly selects {vy,w,} € Ga,u € Zj
and computes =, +— h", v, + v" and w, + w". U's
public key pyy and secret key syy are:

Pku = {.".E;'r q, f:n f! Toy oy gy Uy Wy Wy Ly E{ﬁ: g}u}?
Sk = {%a Q’“}+

4.2 Withdraw
1. U randomly selects s',t & Zy. U sends A =

g fth* to B. U exeutes proof of knowledge for
w. PK[u,t,s;x, =h* AN A" = g“ f'h® ]

U randomly chooses Ry, Ry, R, € Z;. U com-
putes

Z, = thn?E'A — gﬂnj‘ﬂbhﬁc

and sends to B. B returns d € Z;, randomly. U

computes
D, =R, +du
DL = R[; + Eﬂ-
D, = R, +ds

and sends to B. B verifies by

o hPu = Et:-rud

o gPufDipDe — 7, (A"



4.3

B randomly selects v’ & Zy, and sends it to i.

Usets s = r' + 8. U and B locally compute
A= g"f'h® = A'h" each other.

. U and B execute the verifiable encryption proto-

col k times. I{ randomly selects s;1. 80 € 35, I

; ~H(E(2)i) 7 o7 801y 5Ts0s
computes signature 7y = (7 EEI) 5,05, %) e

for E(s); := {EE}1 Eq{:.fleﬂE:?HLa[z? ). B verifies signa-
ture 7y by

&(Tui, i) = e(f, g By 0,51 .
B accepts

Q= (C,....Q) .
(Qi = (E(8)i: i = (7w, S«m-ﬂﬂ]})

. Brandomly selects ry,ry € Z7. B computes o5 =

1
(Avpiy )5z, and sends o .= {og,r1,r2} to .
B records the entry (pry, €2, o) in his database D.
U{ verifies signature o by

E(aﬁ,:{:byhzi,{gfh]”} = E{ﬁfﬁ,g“ﬁhst'gw{.“] .

. U saves the wallet W = (s,t,a,J) , where J is an

[-bit counter initially set to zero.

Spend

. U receives spending data I including merchant

infomation. U4 computes R = H(I).

. U sends
§ = g7
T = g'tvs
to M.
. U chooses Ry,...,Ri3 € Z7 randomly. U exe-

cutes below zero knowledge proof of knowledge
protocols.

PK[(J,R}): Y=g’ h" " modn
AYy=g'hfn 0< T <2 1]

PKls, Re; Ys = h*g't]

PK][t, R; Y; = f'hi]

PKu, R Y, = g" ]

PK[J, R Yy =g’ f77)

PK|[Rg, Ryg; Xo = Th?}bRE{QﬂLJRm]
PK|[Ry, Ry, Rg, R11, Ri2, Ryz; X, = g™
A Xg, = gt~ RoRutRaRui+RaRyy v 2 w)1s
A X g, = ghztRatRa)

PK[J], 88 = g++7|

PKlu,t,J;T = g"t7%7)

U computes

ﬂ'}]r —_ gﬁﬂ

[l
T

a = {xzpys(gfh)™}
.ﬁ — {g“fghst'bwfl }EJ'
X, = hfighe
X, = fRﬁhR-‘l
X, = g™ phe
Xy = g% phe

Xo = (womp)™(gfh)o

Xg, = (gfh)fi

Xﬁz — Q‘_REH”f_HEH“h-_HIH”’L‘f”w&R”
Xg, = gﬁ'sfﬂshm

X*-,‘ — SH3+H-;.-

XTI - TR3+R?

X, = g'
Xp, = HR?+R.';
X, = HR.-,[R.':+R?}I
4
Y, = hg't=
Y, = ftht
Y'.u _ gﬂfﬁu
Y; = g’ f*

v = H(I|| X|| X || Xu| | X || Xa || X, [ Xa, || Xag
|| X s | X [ | X || X || X | [V [ Y| | Y | | Y7)
Uy = R+ ~vsmodp
C?,, = Rs + R, mod p
'y = Rz~ vt mod p
Cy = Ry+ ~Ry mod p
R5 + vu mod p
C, = Rg+ R, mod p
Cy = Ry +vJ mod p
»‘."_i;r = Hg+ Ry mod p

&3
||

¢, = Rg—l—*’;ﬁ% mod p

~ f
Cp = Ry + '}'1‘21—? maod p

Cyp, = Ry1+ 8 mod p
ng = Hys + ’}'Eﬁ 1od L
Cp, = Riz +~%r10 mod p

U sends zero knowledge proof of knowledge ®:
(o' o, 3, Xe, Xo, X, X5, Xy X, Xa,, Xy, X3,
Xry, Xy, Xy, X, Ye, Yo, 1 Yy,

Ce. Ce, Cy,Cy,Cy, Cy, Cy, Cy, Cyy, Cyy, Cy ) to M

. M verifies &,

o X.V.7 = hmg:fa

o X,V = f{.l'th{?.

o X,Y,7 = gCu fﬁu

o« Xj¥)" =g [

o e(os’,a) =e(gfh, )

o X,a7 = (zyyp) " (gf h)Cn



G.gl
ki |

. X,g:,ﬁ’F:X
=g
s SVICHCs) — Xg g"r

o T 1CetCa) X, =

Oy (O +C — (4 - R~
= gl QA O X, ~(OHOD) X, = Xy, g

M accepts the coin {S,T,®, R, I}.
IftJ=2"—1,Usets J=J+1.

[y |

4.4 Deposit
1. M sends the coin {5, 7,®, R, I} to B.

2. B verifies &, and accepts the coin if the (S, R)
pair hasn’t been spent.

4.5 Identify

From the two coins that have the same S and differ-
ent i, B computes sy.

T2R1 (R1—Rg) !
(TLRE) -9
4.6 Trace

B finds pyy = e(g.g)" =elg,g"). B recovers double

spent coin 8,.J;,8; = g** from D . B outputs II :=
(8,5, 9", Pru, Qi)

4.7 Verify Ownership

Anyone can check that the user with pyy is the owner
of a coin with serial number s by

o §— g7t
o E(s); = (el ctd))|e8)||es))
o ey, rug®?) = e(g, gFe v w, 1)

5 Sketch of Security Proof
5.1 Balance

Let us assume that there is an adversary .4 that suc-
ceeds the balance game with non-negligible probability.
From the proof of knowledge protocol, it means that A
can generate a signature o such that verification re-
turns accept but B did not sent to 4. Using A, we can
obtain a forger of the signature scheme in [16].

5.2 Identification of double-spenders

Let us assume that there is an adversary .A that suc-
ceeds the identification game with non-negligible prob-
ability. A outputs two coins C'y, Cs with the same se-
rial number which are accepted by honest bank. Since
marchant information I; differs in € and Ca, T7 # T5
with a high probability. Thus, because of the correct-
ness of the algorithm, we obtain pky = g" from the
equation in 4.5.

Cay Cu ff:&l Ce j,Co, Cs Xﬁ;l{ﬂﬁ-‘:': 4+ 1_,;?::1 wfﬂa

5.3 Trace of double-spenders

When adversary A spends two coins Cy, C'; with the
same serial number, these are valid coins because of
balancde property. Thus the bank outputs pky = g"
from the equation in 4.5. Thus A wins the game only
if the entry € in Bank B is not correct one. It contra-
dicts the security of ElGamal encryption or verifiable
encryption.

5.4 Anonymity of users

For a honest user I{;, we can constract a simulator &
who does not know privte keys for I{; but the output is
computationally indistinguishable from the output of
U; to adversary A.

5.5 Exculpability

Adversary A wins the exculpability game if (1) A can
forge ® accepted by verifvownership or (2) 4 outputs
two varid coins with the same serial number by two
different user U; and Us. For case (1), accepted by
verifyownership includes obtaining a signature acepted
by verification. It means that the signature scheme
in [16] is not existentially-unforgeable and contradicts
the assumption. For case (2), it is impossible to forge
a coin, thus these two coins are really generated by
honest {; and U=, However, in this case, pky cannot
obtained from these coins, thus verifyguilt will return
reject.

6 Conclusion
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