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Abstract– This paper presents an off-line anonymous e-cash schemes, that is secure
under the strong RSA assumption and the strong Diffie-Hellman (SDH) assumption. A
user can withdraw a wallet containing 2k coins, each of which she can spend unlinkably.
The complexity of the withdrawal operation is O(k4), the spend operation is O(k3),
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1 Introduction

1.1 Background

Electronic cash was proposed by Chaum [2][3],
and has been extensively studied [4][5][6][7][8][9][10][11]
[12][13].
As a coin is represented by digital data, and

it is easy to duplicate data, an electronic cash
scheme requires a mechanism that prevents a
user from spending the same coin twice (double-
spending). There are two scenarios. In the on-
line scenario, the bank is on-line in each trans-
action to ensure that no coin is spent twice, and
each merchant must consult the bank before ac-
cepting a payment. In the off -line scenario, the
merchant accepts a payment autonomously, and
later submits the payment to the bank; the mer-
chant is guaranteed that such a payment will be
either honored by the bank, or will lead to the
identification (and therefore punishment) of the
double-spender.
In this paper, we give an off-line 2l-spendable
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unlinkable electronic cash scheme. Our paper’s
framework is based on [15] by Camenisch.

1.2 Our Result

This paper propose a new efficient unlinkable
off-line electronic cash scheme secure in the ran-
dom oracle model. The security proof of our
scheme depends on the RSA assumption and
the SDH assumption.

2 Preliminaries

2.1 Definition of Off-line E-Cash System

Our electronic cash scenario consists of three
usual players: user U , bank B, and merchant
M; together with the algorithms: BKeygen,UKeygen,
MKeygen,Withdraw,Spend,Deposit, Identify,Trace
and VerifyOwnership.

• BKeygen is a key generation algorithm for
bank B. It takes as input k bit secu-
rity parameter, and outputs the key pair,
(pkB, skB).

• UKeygen is a key generation algorithm for
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user U . It takes as input k bit security pa-
rameter, and outputs the key pair, (pkU, skU).

• Withdraw is a protocol between U and B.
U withdraws a 2l unit walletW with serial
number S. U sends signature Q to B. B
records Q in database D to trace user’s
double spending some coin. U receives B’s
signature.

• Spend is a protocol between U andM. U
sends zero-knowledge proof of knowledge
of W Φ toM.

• Deposit is a protocol between M and B.
M sends Φ to B. B verifies Φ. If the
coin has been received already, B rejects
Φ. Otherwise, B accepts it.

• Identify is an algorithm to find double-
spender U 0 from double spent coin Φ1,Φ2.

• Trace is an algorithm to output evidence
Π, which B computes from Φ1,Φ2 and D,
to be used in the VerifyOwnership step.

• VerifyOwnership is an algorithm to con-
firm that U 0 certainly spent coin Φ1,Φ2.
Anyone can verify double spent coin via
serial number S and Π.

2.2 Definition of Security

2.2.1 Unforgeability

Adversary A is given the bank’s public key
pkB. First, A interacts with B K times in the
Withdraw protcol. B issues 2L coins in each
withdrawal. Second, A executes the Spend pro-
tocol with M. Last, M executes the Deposit
protocol with B. A wins the game if B accepts
2LK+1 coins in the Deposit protocol. We define
AdvunforgeA to be the probability thatA wins the
above game, taken over the coin tosses made by
A and B.

2.2.2 Identification of double-spenders

Adversary A is given the bank’s public key
pkB. First, A interacts K times with B in the

Withdraw protcol. B issues 2L coins in each
withdrawal. Last, A executes the Spend pro-
tocol with M. A wins the game if M accepts
2LK+1 coins andM cannot output A’s secret
key. We define AdvidentifyA to be the probabil-
ity that A wins the above game, taken over the
coin tosses made by A andM.

2.2.3 Tracing double-spenders

Adversary A is given the bank’s public key
pkB. First, A interacts K times with B in the
Withdraw protcol. B issues 2L coins in each
withdrawal. Second, A executes the Spend pro-
tocol with M. Last, M executes the Deposit
protocol. B accepts 2LK + 1 coins and out-
puts evidence Π. A wins the game if B cannot
output valid verify-ownership data. We define
AdvtraceA to be the probability that A wins the
above game, taken over the coin tosses made by
A andM.

2.2.4 Anonymity of users

Adversary A sets a bank’s secret and pub-
lic key pkB, skB. Honest users U0, U1 execute
the withdraw protcol, and get wallet W0, W1,
respectively.
One of U0 and U1 is now selected randomly,

say Ub. Ub executes the spend protocol. A out-
puts b0 = 0 or 1.
AdvAnonymityA := 2Pr[b = b0]− 1

2.2.5 Exculpability

Adversary A sets pkB, skB. An honest U
executes withdraw and spend protocols as many
times as A wishes.
A wins the game if A outputs (S,Π) of user

U such that
VerifyOwnership(S,Π) returns accept.

2.3 Verifiable Encryption

In Section 4.2, we apply a technique by Ca-
menisch and Damgard [14] for turning any se-
mantically secure encryption scheme into a ver-
ifiable encryption scheme. A verifiable encryp-
tion scheme is a two-party protocol between a
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prover and encryptor U and a verifier and re-
ceiver B.
In the following, the verifiable encryption of

a committed value is shown, in which ElGamal
encryption is applied to the keys using bilinear
maps.
・Encryption and Decryption
g̃ ∈ G1 and g, f, h ∈ G2 are public data. U ran-
domly chooses u ∈ Z∗p and computes e(g̃, gu) =
e(g̃, g)u. (pk, sk) := (e(g̃, g)

u, gu). Let m be the
plaintext and c the cyphertext.

Encrypt : U randomly chooses k ∈ Z∗p.
c := (c1, c2) = (g̃

k, pk
km).

Decrypt : m =
c2

e(c1, gu)

・A Verifiable Encryption Scheme
A := g̃uf̃ th̃s is a commitment to s. E(s) :=
(g̃k, pk

ks) is an encryption of s. U randomly
chooses r1, r2, r3, r4, k1, k2 ∈ Z∗p. U computes

X = f̃ r1 g̃r2 h̃r3

c11 = r1 + u mod p

c12 = r2 + t mod p

c13 = r3 + s mod p

c21 = r1 + 2u mod p

c22 = r2 + 2t mod p

c23 = r3 + 2s mod p

e1 = (g̃k1 , pk
k1(c11||c12||c13))

e2 = (g̃k2 , pk
k2(c21||c22||c23)) ,

and sends {X, e1, e2} to B.
B returns to a = {1 or 2} randomly.
U sends {ca1, ca2, ca3, ka} to V . Let ā = {1 if

a = 2, 2 if a = 1}.
B verifies

ea = (g̃ka , pk
ka(ca1||ca2||ca3))

f̃ ca1 g̃ca2 h̃ca3 = XAa

E(s) = (eā, ca1||ca2||ca3)
By decripting eā, B obtains cā1 , cā2 and cā3 , and
calculates s by s := c23 − c13 mod p.
This protocol is repeated k times, and U suc-

ceds in cheating B with probability 1
2k
.

2.4 Committed Number Lies in an In-
terval

In Section 4.3, we apply a technique proposed
by Boudot [1] to prove Committed Number:J
belongs to [0, 2k). This requires the strong RSA
assumption.

2.5 Signature Scheme

In Sections 4.2, 4.3, 4.7, we apply a signature
scheme proposed by Okamoto [16] to achieve
anonymity and traceability. The signature scheme
is existentially unforgeable against adaptive cho-
sen message attacks.
・Key generation
Randomly select generators g2, u2, v2 ∈ G2 and
set g1 ← φ(g2), u1 ← φ(u2) and v1 ← φ(v2).
Randomly select x ∈ Z∗p and compute w2 ←
g2
x ∈ G2. The public and secret keys are:

Public key : g1, g2, w2, u2, v2,
Secret key : x
・Signature generation
Let m ∈ Z∗p be the message to be signed. Signer
S randomly selects r and s from Z∗p and com-
putes

σ ← (g1
mu1v1

s)
1

x+r .

(σ, r, s) is the signature of m.
・Signature verification
Given public-key (g1, g2, w2, u2, v2), message m,
and signature (σ, r, s), check that m, r, s ∈ Z∗p,
σ ∈ G1, σ 6= 1, and

e(σ, w2g2
r) = e(g1, g2

mu2v2
s) .

If they hold, the verification result is valid; oth-
erwise the result is invalid.
・Security of signature
The signature scheme is secure against adaptive
chosen message attacks in the standard model
under the SDH-assumption.[16]

3 Assumptions

3.1 Strong RSA Assumption:

Given RSA module n and random element
g ∈ Z∗n, it is hard to compute h ∈ Z∗n and
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integer e > 1 such that he ≡ g mod n. Module
n has special form pq, where p = 2p0 + 1 and
q = 2q0+1 are safe primes. The S-RSA problem
is defined as follows: given n as input, output
pair (a, b)
AdvS−RSA := Pr[n = ab]
Adversary A(t, ²)-breaks S-RSA problem if A
runs in time at most t and AdvS−RSA is at least
². The (t, ²)-S-RSA assumption holds if no ad-
versary A (t, ²)-breaks the S-RSA problem.

3.2 Discrete Logarithm (DL) Assump-
tion:

Given a large prime p and random elements
f, g, h ∈ G order p. It is hard to find x, y, z that
fx = gyhz.
AdvDL := Pr[A(f, g, h) = (x, y, z : f

x = gyhz)]
Adversary A(t, ²)-breaks DL problem if A runs
in time at most t and AdvDL is at least ². The
(t, ²)-DL assumption holds if no adversary A
(t, ²)-breaks the DL problem.

3.3 Strong Diffie-Hellman (SDH) Assump-
tion:

Let (G1,G2) be bilinear groups. The q-SDH
problem in (G1,G2) is defined as follows: given
the (q + 2)-tuple (g1, g2, g

x
2 , . . . , g

xq
2 ) as input,

output pair (g
1

x+c

1 , c) where c ∈ Zp∗. Algorithm
A has advantage, AdvSDH(q), in solving q-SDH
in (g

1
x+c

1 , c) if

AdvSDH(q)← Pr[A(g1, g2, gx2 , . . . , gx
q

2 ) = (g
1

x+c

1 , c)]
Adversary A (t, ²)-breaks the q-SDH problem if
A runs in time at most t and AdvSDH(q) is at
least ². The (q, t, ²)-SDH assumption holds if no
adversary A (t, ²)-breaks the q-SDH problem.

3.4 External Diffie-Hellman Assumption
(XDH):

Suppose a bilinear mapping e:G1 × G2 → G.
The XDH assmption states that the Decisional
Diffie-Hellman (DDH) problem is hard in G1.
This implies that there does not exist an effi-
ciently computable isomorphism ψ0 : G1 → G2.
AdvXDH := Pr[A(g1 ∈ G1, g2 ∈ G2, g ∈ G)

= (g1
u : g = e(g1, g2)

u]
AdversaryA(t, ²)-breaks XDH problem ifA runs
in time at most t and AdvXDH is at least ². The
(t, ²)-XDH assumption holds if no adversary A
(t, ²)-breaks the XDH problem.

4 Proposed E-cash System

4.1 Key Generation

H(x) is a collision-resistant hash function.
Bank: Upon input of security parameter, B

randomly generates
{g, f, h, vb, wb} ∈ G2 and sets g̃ ← ψ(g), f̃ ←
ψ(f), h̃ ← ψ(h), ṽb ← ψ(vb), w̃b ← ψ(wb). B
randomly selects b ∈ Z∗p and computes xb ←
gb, yb ← f b, zb ← hb. B’s public key pkB and
secrets key skB are:
pkB = {g, f, h, vb, wb, xb, yb, zb}, skB = {b}.
User: U randomly selects {vu, wu} ∈ G2, u ∈

Z∗p,μ ∈ Z∗p and computes xu ← hu, ṽu ← vu and
w̃u ← wu,λ = gμ. U ’s public key pkU and secret
key skU are:
pkU = {g, f, h, vu, wu, xu, e(g̃, g)u,λ}, skU = {u, gu,μ}.

4.2 Withdraw

1. U identifies himself to bank B by proving
knowledge of u.PK[u;xu = h

u]

2. U randomly selects v, s0, t ∈ Z∗p. U sends
A0 = f̃ug̃th̃s

0
to B. B randomly selects

r0 ∈ Z∗p , and sends it to U . U sets s =
r0 + s0. U and B locally compute A =
f̃ug̃th̃s = A0h̃r

0
.

3. U and B execute the verifiable encryp-
tion protocol k times. U randomly se-
lects πi, ρi ∈ Z∗p . U computes signature

{σu,πi, ρi} for E(s)i := gtkiā ||e(g̃, g)tkiās.

σu := (g̃
E(s)ivuwu

πi)
1

ρi+u

B verifies signature πi, ρi by

e(σu, xug
ρu) = e(g̃, gE(s)ivuwu

πi)
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B accepts

Q = (Q1, . . . , Qk) .³
Qi = (E(s)i,πi, ρi)

´
4. B randomly selects r1, r2 ∈ Z∗p . B com-
putes σB = (Aṽbw̃br1)

1
b+r2 , and sends σ :=

{σB, r1, r2} to U . B records the entry (pkU, Q, e(g̃, g)u)
in his database D. U verifies signature σ
by

e(σB, xbybzb(fgh)
r2) = e(f̃ g̃h̃, fugthsvbwb

r1) .

5. U saves the walletW = (s, t,σ, J) , where
J is an l-bit counter initially set to zero.

4.3 Spend

1. U receives spending data I including mer-
chant information. U computesR = H(I).

2. U sends S = g 1
s+J , T = gu+

R
t+J toM.

3. U chooses R1, . . . , R13 ∈ Z∗p randomly. U
computes

σB
0 = σB

η

α = {xbyb(fgh)r2}
θ
η

β = {fugthsvbwbr1}θ

Xu = fR1zR2

Xs = gR3zR4

Xt = hR5zR6

XJ = gR7zR8

Xα = xbyb
R9(fgh)R10

Xβ1 = (fgh)R11

Xβ2 = g−R5R11f−R3R11h−R1R11vR12b wR13b

Xβ3 = gR5fR3hR1

XS = SR3+R7

XT1 = TR3+R7

XT2 = gR5

XT3 = gR7+R3

XT4 = gR5(R3+R7)

Yu = fuzRu

Ys = gszRs

Yt = htzRt

YJ = gJzRJ

γ =H(I||Xs||XJ ||Xt||Xu||Xα||Xβ

||XS ||Ys||YJ ||Yt||Yu)
Cu = R1 + γu mod p

C̃u = R2 + γRu mod p

Ct = R3 + γt mod p

C̃t = R4 + γRt mod p

Cs = R5 + γs mod p

C̃s = R6 + γRs mod p

CJ = R7 + γJ mod p

C̃J = R8 + γRJ mod p

Cη = R9 + γ
θ

η
mod p

C̃η = R10 + γr2
θ

η
mod p

Cθ1 = R11 + γθ mod p

Cθ2 = R12 + γ2θ mod p

Cθ3 = R13 + γ2r1θ mod p

U sends zero knowledge proof of knowl-
edge Φ:
(σB

0,α,β, Xs, Xt, Xu, XJ , Xβ ,XS , Ys, YJ , Yt, Yu, γ,
Cs, C̃s, Ct, C̃t, Cu, C̃u, CJ , C̃J , Cθ, C̃θ) toM
.

PK[(J,R0J) : YJ = g
JhRJ0mod n

∧ YJ = gJhRJ ∧ 0 ≤ J < 2l] [1]
PK[s,Rs;Ys = h

szRs ]

PK[t, Rt;Yt = f
tzRt ]

PK[u,Ru;Yu = g
uzRu ]

PK[J,RJ ;YJ = g
JzRJ ]

PK[R9, R10;Xα = xbyb
R9(gfh)R10 ]

PK[R2, R4, R6, R11, R12, R13;Xβ1 = g
R11

∧ Xβ2 = g
(−R6R11+R4R11+R2R11)vR12b w

R13
b

∧ Xβ3 = g
R2+R4+R6 ]

PK[J, s;S = g
1

s+J ]
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PK[u, t, J ;T = gu+
R
t+J ]

4. M verifies Φ. M accepts the coin {S, T,Φ, R, I}.

5. If J > 2l − 1,U sets J = J + 1.

4.4 Deposit

M sends the coin {S, T,Φ, R, I} to B. B ver-
ifies Φ, and accepts the coin if the (S,R) pair
hasn’t been spent.

4.5 Identify

From the two coins that have the same S and
different R, B computes skU.µ
T2

R1

T1
R2

¶(R1−R2)−1
= gu.

4.6 Trace

B finds e(g̃, g)u = e(g̃u, g). B searches for
e(g̃, g)u in D, B discovers double-spender’s pkU.
B recovers double spent coin s, Jj , Sj = g̃

1
Jj+s

from D . B outputs Π := (s, Jj , gu, pkU, Qi).

4.7 Verify Ownership

Bank opens {S, Jj , s, gu, E(s)i,σu,πi, ρi, g̃kã}
where {xu, vu, wu, e(g̃, g)u} is user’s public key
data. Thus anyone can check that the user with
pkU is the owner of the coin with serial number

s by S = g
1

Jj+s , e(g̃, g)u = e(g̃, gu), E(s)i =
(g̃kiā ||e(g̃, g)us), e(σu, xugρu) = e(g̃, gE(s)ivuwuπi).

5 Proof of Security

5.1 Unforgeability

Assume Adversary A is a t-time adversary
whose AdvunforgeA is at least ². We will con-
stract algorithm D that breaks the unforgeabil-
ity of the underlying signature scheme running
in time at most t0 with probability ²0.

1. (Input:)
D’s input {g1, g2, w2, u2, v2} is the public
key of the signature. D’ selects g, f, h such
that gfh = g1 and D’ sets {wb = u2, vb =

v2, xbybzb = w2(random xb, yb, zb)} as the
public key of signature.

D sets this input data as a bank’s public
key.

2. (Withdraw)
D must simulate a e-cash system when
using A. However, because D cannot is-
sue signatures, D asks a signing oracle to
get bank’s signature. While A executes
the withdraw protocol K times, A de-
mands K signatures for D. Whenever A
demands a signature, D asks the signing
oracle. Let σ1,σ2, . . . ,σK be the K signa-
tures D obtains from the signing oracle.

3. (Spend)
We show that if A completes one spend
protocol, D extracts one signature.

A sends spending data information I to
the hash oracle to obtain a hash value.
D simulates random oracle H. D sends
random number γ to A.
Once D gets a valid coin data, D resets
A and changes its response to the hash
oracle to γ0. Let {γ, Cη, Cθ1, . . .} be the
spend coin data when A completes the
spend protocol for the first time. Those
values are defined in Chapter 4.3. Let
{γ0, Cη 0, C̃θ1

0
, . . .} be the spend coin data

when A completes the spend protocol the
second time.

A randomizes the signature with η, θ to
use the signature in the spend protocol.
Let σB be the original signature from the
signing oracle and σB

0 be a randomized
signature by A. D computes

Cη − Cη 0 =
θ

η
(γ − γ0)

Cθ1 − Cθ1 0 = θ(γ − γ0),

obtains η, and calculates σB because γ −
γ0 6= 0. Consequently, σB = (σB 0)

1
η .
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4. (Output)
A completes the deposit protcol 2LK + 1
times using 2LK coins, thus D extracts
2LK + 1 signatures.

In contrast, D only received K signatures
from the signing oracle. A can use sig-
nature 2L times per serial number s. A
must use serial number s, which is un-
signed from the bank, in at least one ex-
ecution of the spend protocol. Thus D
gets at least one signature that the singn-
ing oracle did not issue.

D selects random i and D extracts only the i-
th signature. We pay attention to the one spend
protocol, A must use s that is unsigned from
the bank with probability greater than 1

2LK+1
.

From the assumption, A will complete the de-
posit protocol with probability ² at this time.
However, A is not always completes the deposit
protocol, probability of ² again when D resets
A. Thus we consider the probability that A in
completing the deposit protocol with different
γ.
Heavy Low Lenma

Assume A wins the unforgeability game with
probability ². Let γ be the hash value in the
spend protocol. If D resets A and gives another
hash value γ0, A in completing the same spend
protocol with probability of at least ²

2

4 .
Proof

A in completing the deposit protocol with prob-
ability ² with random γ and other random pa-
rameters. We show a random γ and other ran-
dom parameters, which A suceeds the deposit
protocol probability ²

2 as a defferent γ and the
same other parameters, are selected probability
more than 1

2 . We define the heavy row that A
in completing the deposit protocol with proba-
bility of more than ²

2 using other fixed param-
eters. No heavy rows exist with probability of
more than ²

2 . Therefore, heavy rows exist with
probability of more than ²

2 . In other words, the
random γ and other random parameters that
fallow A to complete in the deposit protocol

belong to a heavy row with probability of more
than 1

2 . Namely A suceeds the deposit protocol
probability ², it belongs to heavy row proba-
bility more than 1

2 and A suceeds the deposit
protocol using differnt γ probability more than
²
2 .

t0 = 2t, ²0 = ²2

4(2LK+1)
. 2L is coin size and a

constant value. K is a polynomial value.

5.2 Identification of double-spenders

Assume Adversary A is a t-time adversary
whose AdvidentifyA is at least ². We will construct
algorithm D that breaks the underlying signa-
ture scheme running in time at most t0 with
probability ²0.

1. (A breaks unforgeability)
From difinition of identification, A with-
draws a 2l coin K times and A spends
2lK + 1 coins.

If two spending datas {T = gu+ R
t+J , R}, {T 0 =

g
u0+ R0

t0+J0 , R0} exist u = u0∧ t = t0∧s = s0,
A can compute user’s public key gu.µ

T 0R

TR0

¶ 1
R−R0

= gu.

Thus two spending datas {T = gu+ R
t+J , R}, {T 0 =

g
u0+ R0

t0+J0 , R0} exist ¬(u = u0 ∧ t = t0 ∧ s =
s0). It is show that A breaks unforgeabil-
ity.

2. (A cheats verifiable encryption protocol)
No more than 1

2k
probability A cheets the

verifiable encryption protocol.

BecauseA can break unforgeability with prob-
ability ²− 1

2k
,

t0 = 2t, ²0 =
(²− 1

2k
)2

4(2LK + 1)
.

2L is coin size and a constant value. K is a
polynomial value.
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5.3 Tracing double-spenders

Assume Adversary A is a t-time adversary
whose AdvtraceA is at least ². We will then con-
struct algorithm D that breaks the DL assump-
tion with (t0, ²0).
An informal outline of our proof is as follows:

If A completes the verifiable encryption, D gets
a DL-relation by resetting A. If A completes
the spend protocol, D gets another DL-relation
by resetting A. We show that if A breaks the
trace security, D can obtain two different DL-
relations.
Algorithm D is constructed as follows:

1. (Input:)
D’s input (f, g, h) is 3 elements of DL as-
sumption.

2. (Bank’s key generation:)
D sets f̃ = ψ(f), g̃ = ψ(g), h̃ = ψ(h). D
randomly selects generators vb and wb and
sets ṽb = ψ(vb), w̃b = ψ(wb). D randomly
selects b ∈ Z∗p and computes xb = gb, yb =
f b, zb = h

b.

3. (Share A in simulation withdraw protcol)
D receives A0 from A. D randomly selects
r0 ∈ Z∗p and sends it to A. Let A = A0h̃r

0
.

4. (Verifiable encryption)
First, A and D execute verifiable encryp-
tion m times. At the m-th verifiable en-
cryption cycle, D receives Xm, em1, em2,
D sends bit bm = {1 or 2} to A. D
receives m-th verifiable encryption data:
c{m,bm,1}, c{m,bm,2}, c{m,bm,3}, km, τm, sm1, sm2.

Second, D resets A and repeats verifiable
encryption m times. A is reset, so A re-
turns the same Xm, em1, em2. D sends
b̃m = {1 or 2} that b̃m = 3− bm. Finally,
D gets c{m,1,1}, c{m,1,2}, c{m,1,3}, c{m,2,1}, c{m,2,2}
and c{m,2,3}.

D computes ūm = c{m,2,1}−c{m,1,1}, t̄m =
c{m,2,2}−c{m,1,2} and s̄m = c{m,2,3}−c{m,1,3}.

If verifiable encryption is successful,

f ūmgt̄mhs̄m = A

with probability (1− 1
2m ) because

∃m, f c{m,1,1}gc{m,1,2}hc{m,1,3}
= XA ∧ f c{m,2,1}gc{m,2,2}hc{m,2,3} = XA2.
Let ū, t̄ and s̄ denote ∃m above ūm, t̄m and
s̄m.

5. (Spend)
First, A sends spending data information
I to the hash oracle. D simulates random
oracle H. D sends ramdom number γ as
H(I|| . . .) to A.
D receives
{γ, Cu, Ct, Cs, . . .}.
Second, D resets A and repeats the spend
protcol again. A is reset, so A returns
the same value {I, . . . }. D sends another
random number γ0 as H(I|| . . .) to A.
D receives
{γ0, Cu0, Ct0, Cs0, . . .}.
D computes

u =
Cu − Cu0
γ − γ0

t =
Ct − Ct0
γ − γ0

s =
Cs − Cs0
γ − γ0 .

Since A succeeds in spending, (u, t, s) sat-
isfies A = fugths with probability ².

6. (Trace)
If (ū, t̄, s̄) = (u, t, s), D gets correct value
gt in the identify phase. Thus the bank
can find the withdraw data to search the
database. s is also correct, so Q is an
evidence of double-spending.

7. (Output)
D finds discrete logarithm relation, fugths =
fu

0
gt
0
hs

0
.

h = f
ū−u
s−s̄ g

t̄−t
s−s̄
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D outputs

x =
ū− u
s− s̄

y = 1

z =
t̄− t
s− s̄ .

D gets the DL relation t0 = 3t + cmT , ²0 =
²(1− 1

2m ). c is a constant value, where T is the
time to calculate an exponential.

5.4 Anonymity of users

Let A1 = dy1fu1gt1ts1 be a share between
A and U1 and A2 = dy2fu2gt2ts2 be a share
between A and U2.
dy1 and dy2 are randomize numbers, ∀y1, u1, t1, s1, u2, t2, s2, ∃y2, A1 =

A2. In other words, no one distinguish A1 of
random select y1 from A2 of random select y2.
Thus this protocol is information-theoretically
secure.

5.5 Exculpability

Assume Adversary A is a t-time adversary
whose AdvexculpabilityA is at least ². We will then
construct algorithm D that breaks the XDH as-
sumption with (t0, ²0).
A has to output gu from e(g, g̃)u. If such A

exists, it breaks the XDH assumption. Thus D
gives A e(g, g̃)u and outputs gu.
t0 = t, ²0 = ²

6 Conclution

This paper proposes two off-line anonymous
e-cash schemes. One is an efficient off-line e-
cash schemes that is secure under the strong
RSA assumption, the strong Diffie-Hellman (SDH)
assumption and External Diffie-Hellman (XDH)
assumption with the random oracle model. This
scheme is more efficient than the “Compact E-
Cash” proposed by Jan Camenisch, Susan Ho-
henberger and Anna Lysyanskaya, and is re-
moved non-standard assumption such as Sum-
Free Decisional Diffie-Hellman assumption us-
ing “Efficient Blind and Partially Blind Signa-

ture Without Random Oracles” proposed by
Tatsuaki Okamoto.
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