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1 Introduction

1.1 Background
Recently, as the Internet has expanded, many researchers

have become interested in secure auction protocols and var-
ious schemes have been proposed to ensure the safe transac-
tion of sealed-bid auctions. A Secure auction is a protocol in
which each player can find only the highest bid and its bid-
der (called the first price auction) or the second highest bid
and the first price bidder (called the second price auction).
Jakobsson and Juels proposed a secure MPC protocol to
evaluate a function comprising a logical circuit, called mix-
and-match [6]. Based on the mix-and-match protocol, we
can easily find a secure auction protocol by repeating the
millionaires’ problem for two players. However, the mix-
and-match protocol requires two plaintext equity tests for a
two-input one-output gate. Thus, it is important to reduce
the number of gates in Cf to achieve function f . Kurosawa
and Ogata suggested a more efficient auction protocol than
that one based on the millionaire’s problem [7].
Boneh, Goh and Nissim suggested a public evaluation sys-
tem for 2-DNF formula based on an encryption of Boolean
variables [3]. Their protocol is based on Paillier’s scheme
[10], so it has additive homomorphism and in addition the
bilinear map allows one multiplication on encrypted values.
As a result, its property allows the evaluation of multivali-
ate polynomials of a total of degree two on encrypted values.

1.2 Our result
In this paper, we introduce bit-slice auction protocols

based on the public evaluation of the 2-DNF formula. For
the first price auction, the protocol uses no mix-and-match
gates. For the second price auction, we use the mix-and-
match protocol fewer times than that suggested in [7].

1.3 Related works
There are many auction protocols[1, 5, 8], however, they

have problems such as those described hereafter. The first
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secure auction scheme proposed by Franklin and Reiter [5]
does not provide full privacy, since at the end of an auction
players can know other player bids. Lipmaa, Asokan and
Niemi proposed an efficient secure auction scheme [8]. In
this scheme, the trusted auction authority can know the
bid statistics. Abe and Suzuki suggested a secure auction
scheme for the M + 1st auction based on homomorphic
encryption [1]. The M + 1st price auction is a generalized
auction protocol for selling M units of a single kind of goods,
and the M +1st highest price is the winning price, however
a player’s bid is not a binary expression. So, it requires a
cost of O(m2k) for a m-player and k-bid auction.

2 Preliminaries

2.1 Mix and Match Protocol
The mix-and-match protocol is a general multiparty pro-

tocol proposed by [6]. It uses a homomorphic encryption
scheme and a MIX net. This model involves n players,
denoted by P1, P2, ..., Pn and assumes that there exists a
public board. The players agree in advance on the presen-
tation of the target function, f as a circuit Cf . The aim of
the protocol is for players to compute f(B1, ..., Bn) with-
out revealing any additional information. Its outline is as
follows.

1. Input stage: Each Pi(1 ≤ i ≤ n) computes ci-
phertexts of the bits of Bi and broadcasts them. She
proves that each ciphertext represents 0 or 1 by using
the zero-knowledge proof technique in [3].

2. Mix and Match stage: The players blindly
evaluates each gate, Gj in order.

3. Output stage: After evaluating the last gate GN ,
the players obtain ON , a ciphertext encrypting f(B1, ..., Bn).
They jointly decrypt this ciphertext value to reveal
the output of the function f .
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2.1.1 Requirements for the Encryption Func-
tion

Let E be a public-key probabilistic encryption function.
We denote by E(m) the set of encryptions for a plaintext
m and by c ∈ E(m) a particular encryption of m.
Function E must satisfy the following properties.

Homomorphic property There exists a polynomial time
computable operations, −1 and ⊗, as follows for a
large prime q.
1.If c ∈ E(m), then c−1 ∈ E(−m mod q).
2.If c1 ∈ E(m1) and c2 ∈ E(m2), then c1 ⊗ c2 ∈
E(m1 + m2 mod q).
For a positive integer a, define
a · e = c ⊗ c ⊗ · · · ⊗ c

| {z }

a

Random re-encryption Given c ∈ E(m), there is a
probabilistic re-encryption algorithm that outputs c′ ∈
E(m), where c′ is uniformly distributed over E(m).

Threshold decryption For a given ciphertext c ∈ E(m),
any t out of n players can decrypt c along with a zero-
knowledge proof of the correctness. However, any t-1
out of n players cannot decrypt c.

2.1.2 MIX protocol
A MIX protocol (proposed in [4]) takes a list of cipher-

texts, (ξ1, ...., ξL) and outputs a permuted and re-encrypted
list of the ciphertexts (ξ′1, ..., ξ

′
L) without revealing the re-

lationship between (ξ1, ..., ξL) and (ξ′1, ..., ξ
′
L), where ξi or

ξ′i can be a single ciphertext c, or a list of l ciphertexts,
(c1, ..., cl), for some l > 1. For all players to verity the va-
lidity of (ξ′1, ..., ξ

′
L), we use the universal verifiable MIX net

protocol suggested by [11].

2.1.3 Plaintext Equality Test
Given two ciphertexts c1 ∈ E(v1) and c2 ∈ E(v2), this

protocol checks if v1 = v2. Let c0 = c1 ⊗ c−1
2 .

(Step 1) For each player Pi (where i = 1,...,m):
Pi chooses a random element ai ∈ Z∗

q and computes zi =
ai · c0. He broadcasts zi and proves the validity of zi in
zero-knowledge.
(Step 2) Let z = z1 ⊗ z2 ⊗ · · · ⊗ zn. The players jointly
decrypt z using threshold verifiable decryption and obtain
plaintext v. Then it holds that

v =



0 if v1 = v2

random otherwise

2.1.4 Mix and Match Stage
For each logical gate, G(x1, x2) of a given circuit, n play-

ers jointly computes E(G(x1, x2)) from c1 ∈ E(x1) and
c2 ∈ E(x2) keeping x1 and x2 secret. For simplicity, we
show the mix-and-match stage for AND gate.

1. n players first consider the standard encryption of
each entry of table shown below.

2. By applying a MIX protocol to the four rows of the ta-
ble, n players jointly compute blinded and permuted
rows of the table. Let the ith row be (a′

i, b
′
i, c

′
i) for i

= 1,...,4.

3. n players next jointly find the row i such that the
plaintext of c1 is equal to that of a′

i and the plaintext
of c2 is equal to that of b′i by using the plaintext
equality test protocol.

4. For the row i, it holds that c′i ∈ E(x1 ∧ x2).

x1 x2 x1 ∧ x2

a′
1 ∈ E(0) b′1 ∈ E(0) c′1 ∈ E(0)

a′
2 ∈ E(0) b′2 ∈ E(1) c′2 ∈ E(0)

a′
3 ∈ E(1) b′3 ∈ E(0) c′3 ∈ E(0)

a′
4 ∈ E(1) b′4 ∈ E(1) c′4 ∈ E(1)

2.2 Bit-Slice Auction Circuit
We introduce an efficient auction circuit called the bit-

slice auction circuit suggested by [6].

Suppose that Bmax = (b
(k−1)
max , ..., b

(0)
max)2 is the highest bid-

ding price and a bid of a player i is Bi = (b
(k−1)
i , ..., b

(0)
i )2,

where ()2 is the binary expression. Then the proposed cir-

cuit first determines b
(k−1)
max by evaluating the most signifi-

cant bits of all the bids. It next determines b
(k−2)
max by looking

at the second most significant bits of all the bids, and so
on.
For two m-dimensional binary vectors
X = (x1, ..., xm) and Y = (y1, ..., ym),

X ∧ Y = (x1 ∧ y1, ..., xm ∧ ym)

Let Dj be the highest price when considering the upper
j bits of the bids. That is,

D1 = (b
(k−1)
max , 0, ..., 0)2

D2 = (b
(k−1)
max , b

(k−2)
max , 0, ..., 0)2

· · ·
Dk = (b

(k−1)
max , ..., b

(0)
max)2

In the j-th round, we find b
(k−1)
max and eliminate a player Pi

such that his bid satisfies Bi < D1. For example, in the
case of j = 1, a player i is eliminated if his bid Bi < Dj .
By repeating this operation for 1 to k − 1, at the end the
remaining bidder is the winner.
For this purpose, we update W = (w1, ..., wm) such that

wi =



1 if Bi ≥ Dj

0 otherwise

for j = 1 to k. The circuit is obtained by implementing
the following algorithm. For given m bids, B1, ..., Bm, Vj is
defined as

Vi = (b
(j)
1 , ..., b

(j)
m )

for j = 0,...,k − 1, that is, Vj is the vector consisting of the
(j+1)th lowest bit of each bid. Let W = (w1, ..., wm), where
each wj = 1. For j = k − 1 to 0, perform the following;
(Step 1) For W = (w1, ..., wm), let

Sj = W ∧ Vj

= (w1 ∧ b
(j)
1 , ..., wm ∧ b

(j)
m )

b
(j)
max = (w1 ∧ b

(j)
1 ) ∨ · · · ∨ (wm ∧ b

(j)
m ) .

(Step 2) If b
(j)
max = 1, then let W = Sj .

Then the highest price is obtained
as Bmax = (b

(k−1)
max , ..., b

(0)
max)2. Let the final W be (w1, ..., wm).

Then Pi is the winner if and only if wi = 1. We summarize
the algorithm as the following theorem.
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Theorem 1 [7] In the bit-slice auction above,
- Bmax is the highest bidding price.
- For the final W = (w1, ..., wm), Pi is a winner if and only
if wi = 1 and Pi is the only player who bids the highest price
Bmax.

2.3 Evaluating 2-DNF Formulas on Ciphertexts
Given encrypted Boolean variables x1, ..., xn ∈ {0, 1}, a

mechanism for public evaluation of a 2-DNF formula was
suggested in [3]. They presented a homomorphic public
key encryption scheme based on finite groups of composite
order that supports a bilinear map. In addition, the bilinear
map allows for one multiplication on encrypted values. As
a result, their system supports arbitrary additions and one
multiplication on encrypted data. This property in turn
allows the evaluation of multivariate polynomials of a total
degree of two on encrypted values.

2.3.1 Bilinear groups
Their construction makes use of certain finite groups of

composite order that supports a bilinear map. We use the
following notation.

1. G and G1 are two (multiplicative) cyclic groups of
finite order n.

2. g is a generator of G.

3. e is a bilinear map e : G × G → G1.

2.3.2 Subgroup decision assumption
We define algorithm G such that given security parameter

τ ∈ Z+ outputs a tuple
(q1, q2, G, G1, e) where G, G1 are groups of order n = q1q2

and e : G×G → G1 is a bilinear map. On input τ , algorithm
G works as indicated below,

1. Generate two random bit primes, q1, q2 and set n =
q1q2 ∈ Z.

2. Generate a bilinear group G of order n as described
above. Let g be a generator of G and e : G×G → G1

be the bilinear map.

3. Output (q1, q2, G, G1, e).
We note that the group action in G and G1 as well
as the bilinear map can be computed in polynomial
time.

Let τ ∈ Z+ and let (q1, q2, G, G1, e) be a tuple produced by
G where n = q1q2. Consider the following problem. Given
(n, G, G1, e) and an element x ∈ G, output ’1’ if the order
of x is q1 and output ’0’ otherwise, that is, without knowing
the factorization of the group order n, decide if an element
x is in a subgroup of G. We refer to this problem as the
subgroup decision problem.

2.3.3 Homomorphic public key system
We now describe the proposed public key system which

resembles the Paillier [10] and the Okamoto-Uchiyama en-
cryption schemes [9]. We describe the three algorithms
comprising the system.

KeyGen Given a security parameter τ ∈ Z, run G to ob-
tain a tuple (q1, q2, G, G1, e). Let n = q1q2. Select

two random generators, g and u
R←− G and set h = uq2

. Then h is a random generator of the subgroup of G
of order q1. The public key is PK = (n, G, G1, e, g, h).
The private key is SK = q1.

Encrypt(PK, M) We assume that the message space con-
sists of integers in set
{0, 1, ..., T} with T < q2. We encrypt binary repre-
sentation of bids in our main application, in which
case T = 1. To encrypt a message m using public
key PK, select a random number r ∈ {0, 1, ..., n− 1}
and compute C = gmhr ∈ G.
Output C as the ciphertext.

Decrypt(SK, C) To decrypt a ciphertext C using the pri-
vate key SK = q1, observe that Cq1 = (gmhr)q1 =
(gq1)m Let ĝ = gq1 . To recover m, it suffices to
compute the discrete log of Cq1 base ĝ.

2.3.4 Homomorphic properties
The system is clearly additively homomorphic.

Let (n, G, G1, e, g, h) be a public key. Given encryptions C1

and C2 ∈ G1 of messages m1 and m2 ∈ {0, 1, ..., T} respec-
tively, anyone can create a uniformly distributed encryption
of m1 + m2 mod n by computing the product C = C1C2h

r

for a random number r ∈ {0, 1, ..., n−1}. More importantly,
anyone can multiply two encrypted messages once using the
bilinear map. Set g1 = e(g, g) and h1 = e(g, h). Then g1 is
of order n and h1 is of order q1. Also, write h = gαq2 for
some (unknown)α ∈ Z. Suppose we are given two cipher-
texts C1 = gm1hr1 ∈ G and C2 = gm2hr2 ∈ G. To build
an encryption of product m1 ·m2 mod n given only C1 and
C2, 1) random r ∈ Zn, and 2) set C = e(C1, C2)h

r
1 ∈ G1.

Then

C = e(C1, C2)h
r
1 = e(gm1hr1 , gm2hr2)hr1

= gm1m2hm1r2+r2m1+q2r1r2α+r
1 = gm1m2hr′

∈ G1

where r′ = m1r2 + r2m1 + q2r1r2α + r is distributed uni-
formly in Zn as required.

2.4 Key sharing
In [2], efficient protocols are presented for a number of

players to generate jointly an RSA modulus N = pq where
p and q are prime, and each player retain a share of N . In
this protocol, none of the players can know the factorization
of N .Their protocol was based on the threshold decryption
that m out of m players can decrypt the secret. We use this
protocol to share private keys among auction managers.

3 New efficient auction protocol

In this section, we show bit-slice auction protocol based
on the evaluation of multivariate polynomials of a total de-
gree two on encrypted values.

3.1 First price auction with 2-DNF scheme
We assume n players, P1, ..., Pn and a set of auction man-

agers, AM . The players bid their encrypted prices, and
through the protocol they publish encrypted flags whether
they are still in the auction. AM jointly decrypts the result
of the protocol. Players find the highest price through the
protocol and the winner by decrypting the result.

3.1.1 Setting
AM jointly generates and shares private keys among auc-

tion managers using the technique described in [2].
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3.1.2 Bidding Phase
Each player Pi computes a ciphertext of his bidding price,

Bi as

ENCi = (ci,k−1, ...., ci,0)

where ci,j ∈ EG(b
(j)
i ), and publishes ENCi on the bulletin

board. He also proves in zero-knowledge that b
(j)
i = 0 or 1

by using the technique described in [3].

3.1.3 Opening Phase
Suppose that c1 = gb1hr1 ∈ EG(b1) and c2 = gb2hr2 ∈

EG(b2), where b1, b2 are binary and r1, r2 ∈ Z∗
p are random

numbers. We define two polynomial time computable oper-
ations Mul and ⊗ by applying a 2DNF formula for AND,
OR respectively.

Mul(c1, c2) = e(c1, c2) = e(gb1hr1 , gb2hr2) ∈ EG1(b1 ∧ b2)
c1 ⊗ c2 = gb1hr1 · gb2hr2 = gb1+b2hr1+r2 ∈ EG(b1 + b2)

by applying a 2DNF formula for AND.
AM generates W = (w1, ..., wm), where each wj =1, and

encrypts them as fW = (w̃1, ..., w̃m). AM shows that fW is
the encryption of (1,...,1) with the verification protocols.
(Step 1) For j = k -1 to 0, perform the following.

(Step 1-a) For fW = (w̃1, ..., w̃m), AM computes si,j =
Mul(w̃i, ci,j) for each player i, and

Sj = (Mul(w̃1, c1,j), ..., Mul(w̃m, cm,j))
hj = Mul(w̃1, c1,j) ⊗ · · · ⊗ Mul(w̃m, cm,j)

(Step 1-b) AM takes a plaintext equality test regarding
whether hj is an encryption of 0. If hj is an encryption of

0, AM publishes 0 as the value of b
(j)
max and proves it with

the verification protocols, otherwise, AM publishes 1 as the
value of b

(j)
max.

(Step 1-c) If b
(j)
max = 1, then each player creates a new

encryption w̃i which has the same plaintext value of si,j ,
otherwise he uses wi for the next bit. And the player shows
the validity of computation with zero-knowledge proof.
(Step 2) For the final fW = (w̃1, ..., w̃m), AM decrypts each
w̃i with the verification protocols and obtains plaintext wi.
The highest price is obtained as
Bmax = (b

(k−1)
max , ..., b

(0)
max)2. Pi is a winner if and only if

wi = 1.

3.2 Second price auction with 2-DNF scheme
and mix-and-match protocol

In the second price auction, the information that play-
ers can find is the second highest price and the bidder of
the highest price. To maintain secrecy of the highest bid
through the protocol, we need to use the mix-and-match
protocol. However, we can reduce the number of times we
use it. As a result, the proposed protocol is more efficient
than that in [7]. Here, we define three types of new tables,
Selectm, MAP1 and MAP2 for the second price auction. In
our protocol, mix-and-match tables are created among AM
before an auction. AM computes jointly for distributed
decryption of plaintext equality test. Table Selectm is also
used for the second price auction protocol in [7]; MAP1 and
MAP2 are new tables that we propose. MAP1 and MAP2

are used for mapping a encrypted value a1 ∈ EG1 (which
is an output of a computation with one multiplication) to
a2 ∈ EG

Table Selectm has 2k + 1 input bits and k output bits as
follows.

Selectm(b, x(m−1), ..., x(0), y(m−1), ..., y(0))

=



(x(m−1), ..., x(0)) if b = 1

(y(m−1), ..., y(0)) otherwise

For two encrypted input vectors (x(k−1), ..., x(0)) and (y(k−1), ..., y(0)),
b is an encrytption of check bit that selects which vector to
output,
(x(k−1), ..., x(0)) or (y(k−1), ..., y(0)). For secure computa-
tion, AM re-encrypts an output vector.
The function of table MAP1 is a mapping
x1 ∈ {EG1(0), EG1(1)} → x2 ∈ {EG(0), EG(1)}.

x1 x2

a1 ∈ EG1(0) b1 ∈ EG(0)

a2 ∈ EG1(1) b2 ∈ EG(1)

The table MAP2 is the one for mapping
x1 ∈ {EG1(0), EG1(1), ..., EG1(m)} → x2 ∈ {EG(0), EG(1)}.

x1 x2

a1 ∈ EG1(0) b1 ∈ EG(0)

a2 ∈ EG1(1) b2 ∈ EG(1)

· · · bi ∈ EG(1)

am+1 ∈ EG1(m) bm+1 ∈ EG(1)

These tables can be composed on using the mix-and-match
protocol because the Boneh-Goh-Nissim encryption has ho-
momorphic properties. The setting and bidding phases are
the same as the first price auction, so we start from the
opening phase.

3.2.1 Opening Phase
Let fW = (w̃1, .., w̃m), where each wj ∈ EG(1) shown

above.
(Step 1) For j = k -1 to 0, perform the following.

(Step 1-a) For fW = (w̃1, ..., w̃m), AM computes si,j =
Mul(w̃i, ei,j) for each player i, and

Sj = (Mul(w̃1, e1,j), ..., Mul(w̃m, em,j))
hj = Mul(w̃1, e1,j) ⊗ · · · ⊗ Mul(w̃m, em,j)

(Step 1-b) AM uses table MAP1 for si,j for each i and

find the values of s̃i,j . Let eSj = (s̃1,j , ..., s̃m,j). AM also
uses the table MAP2 for hj as an input value. By using
this table, AM retrieve E(bj) ∈ EG(0) if hj is a ciphertext
of 1, otherwise he retrieves Ebj ∈ EG(1).
(Step 1-c) AM uses the table Selectm as input values

(E(bj), eSj , W ).
By using table Selectm, if E(bj) is the encryption of 1, AM

updates W = eSj , otherwise W remains unchanged.

(Step 2) For the final fW = (w̃1, ..., w̃m), AM decrypts each
w̃i with verification protocols and obtains the plaintext wi.
Pi is a winner if and only if wi = 1. We remove the player
who bids the highest price and run the first price auction
protocol again. The second highest price is obtained
as Bmax = (b

(k−1)
max , ..., b

(0)
max)2.

Verification protocols
Verification protocols are the protocols for players to con-
firm that AM decrypts the ciphertext correctly. By using
the protocols, each player can verify the result of auction
is correct. Denote b is a palintext and C is a BGN en-
cryption of b (C = gbhr), where g, h, r is elements used in
BGN scheme and f = (h)(gb)−1. Before a player verifies
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whether b is the plaintext of C, the player has to prove that
a challenge ciphertext C = gxfr is created by himself with
zero-knowledge proof that he has the value of x.

1. A player proves that he has random element x ∈ Z∗
n

with zero-knowledge proof.

2. The player computes f = (h)(gb)−1 from published
the values, h, g and b, and select a random integer
r ∈ Z∗

n.He sends C = gxfr to AM .

3. AM decrypts C and sends value x′ to the player.

4. The player verifies whether x = x′. AM can decrypt
C correctly only if order(f) = q, which means AM
correctly decrypts C and publishes b as the plaintext
of C.

3.3 Security
1. Privacy for bidding prices

Each player can not retrieve any information except
the winner and the highest price or the second high-
est price(the first price auction, second price auction
respectively). An auction scheme is secure if there
is no polynomial time adversary that breaks privacy
with non-negligible advantage ε(τ). We prove that
the privacy for bidding prices in the proposed auc-
tion protocols under the assumption that BGN en-
cryption with the mix-and-match oracle is semanti-
cally secure. The mix-and-match oracle receives an
encrypted value x1 ∈ EG1 and returns the encrypted
value x2 ∈ EG according to the mix-and-match table
below (which has the same function with MAP2).

x1 x2

a1 ∈ EG1(0) b1 ∈ EG(0)

a2 ∈ EG1(1) b2 ∈ EG(1)

· · · bi ∈ EG(1)

am+1 ∈ EG1(m) bm+1 ∈ EG(1)

Given an encrypted value x1 ∈ EG1 , the function of
mix-and-match table is a mapping x1 ∈ EG1 → x2 ∈
EG. The range of input value is supposed to be from
0 to m and the one of output is from 0 to 1. We
do not consider a case when an input value is out of
the range. Using this mix-and-match oracle, an ad-
versary can compute any logical function without the
limit that BGN encyrption scheme can use only one
multiplication on encrypted values. So, an adversary
can calculate Selectm(b, x(m−1), ..., x(0), y(m−1), ..., y(0)) =
b(x(m−1), ..., x(0)) + (1 − b)(y(m−1), ..., y(0)) with ad-
ditional polynomial computation. MAP1 is also can
be composed if the range of input value is restricted
0 to 1. Here, we define two semantic secure games
and advantages for BGN encryption scheme and our
auction protocols and show if there is adversary B
that breaks the proposed auction protocol, we can
compose adversary A by B.

Definition 1
Let Π = (KeyGen, Encrypt(PK, M), Decrypt(SK, C))
be a BGN encryption scheme, and let AO1 be two
probabilistic polynomial-time algorithms AO1

1 and AO1
2 ,

that can use the mix-and-match oracle O1.

BGN-Adv(τ) = Pr[EXPTA,Π(τ) ⇒ 1] − 1/2

where, EXPTA,Π is a semantic security game of the

(PK,SK) ← KeyGen
(m0, m1, s) ← Ao1

1 (PK)
b ← {0, 1}

c ← Encrypt(PK,mb)
b′ ← Ao1

2 (c, s)
return 1 iff b = b′

Figure 1: EXPTA,Π

BGN encryption scheme with mix-and-match oracle
shown in Table 1. We then define an adversary B for
an auction protocol and an advantage for B.

Definition 2
Let Π = (KeyGen, Encrypt, Decrypt) be a BGN en-
cryption scheme, and let B be two probabilistic polynomial-
time algorithm B1 and B2.

Auction-Adv(τ) = Pr[EXPTB,Π = 1] − 1/2

where EXPTB,Π is a semantic security game of the
privacy of the auction protocol shown in Table 2.
First of all, B1 generates k-bit integers, b1, b2, ..., bm−1

as plaintexts of bidding prices for player 1 to m − 1,
and two challenge k-bit integers as bm0 , bm1 where
bm0 and bm1 are the same bits except for i-th bit m0

and m1. We assume bm0 and bm1 are not the first
price bid in a first price auction and the second high-
est price in a second price auction.Then the auction
is executed with
(Encrypt(PK, b1), Encrypt(PK, b2), ...,
Encrypt(PK, bm−1), Encrypt(PK, bmb))
as players′ bids as encrypted the players’ bidding

prices where b
r←− {0,1}. After the auction, B2 out-

puts b’ ∈ {0,1} as a guess for b. B wins if b = b’.

Theorem 2 The privacy of auction protocols is se-
cure under the assumption that the BGN encryption
is semantically secure with a mix-and-match oracle.

We show if there is adversary B that breaks the se-
curity of the proposed auction protocol, we can com-
pose adversary A that breaks the semantic security
of the BGN encryption with the mix-and-match or-
acle. A receives two challenge k-bit integers as bm0

and bm1 and then A uses them as challenge bits for
the challenger of the BGN encryption. Then A re-
ceives Encrypt(PK, mb) and executes a secure auc-
tion protocol with the mix-and-match table. In the
auction, when decrytpted values are needed, A can
calculates them since he knows the all input values,
b1, b2, ..., bm−1 except i − th bit of bmb. Through the
protocol, B surveies the calculation of encrypted bids
and the result of the auction. After the auction, B
outputs b′, which is the guess for b. A outputs b′,
which is the same guess with B’s output for bmb . if B
can breaks the privacy of bidding prices in our auction
protocol with advantage ε(τ), A can break semantic
security of BGN encryption with the same advantage.

2. Correctness
For correct players’ inputs, the protocol outputs the
correct winner and price. From theorem 1 introduced
in Section 2.2, the bit-slice auction protocol obviously
satisfies the correctness.
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(PK,SK) ← KeyGen
(b1, b2, ..., bm−1, bm0, bm1, s) ← B1(PK)

b ← {0, 1}
c ← (Encrypt(PK, b1), Encrypt(PK, b2), ..., Encrypt(PK, bm−1), Encrypt(PK, bmb))

execute auction protocols using
c as players′ bids

b′ ← B2(c, s)
return 1 iff b = b′

Figure 2: EXPTB,Π

AND OR Selectm MAP1 MAP2 Total PET(approx.)
[KO02] (2m − 1)k (m − 1)k k 0 0 (13mk/2) − 4k

Proposed 0 0 k mk k 2mk

Table 1: The number of PET in the second price auction

AND PET Total PET(approx.)
[KO02] mk k 2mk + k

Proposed 0 k k

Table 2: The number of PET in the first price auction

3. Verification of the evaluation
To verify whether the protocol works correctly, play-
ers need to validate whether AM decrypts the evalu-
ations of the circuit on ciphertexts through the pro-
tocol. We use verification protocols introduced above
so that each player can verify whether the protocol is
computed correctly.

4 Comparison

4.1 First price auction
The protocol proposed [7] requires mk AND computa-

tions and k plaintext equality tests. One AND computation
requires two plaintext equality tests. So, the total number
of plaintext equality test is mk +k. On the other hand, the
proposed protocol is based on only a 2-DNF scheme and
requires k plaintext equality tests. A comparison between
the proposed protocol and that in [7] is shown in the Table
2 above.

4.2 Second price auction
In the second price auction protocol, the protocol in [7]

requires (2m− 1) AND, (m− 1)k OR and k Selectm gates.
One OR gate requires two plaintext equality tests and one
Selectm gate requires one test, so in total approximately
(13mk) − 4k requires plaintext equality tests are required.
Conversely, the proposed protocol requires MAP1 mk times
and MAP2 k times. MAP1 requires one plaintext equality
test and MAP2 requires approximately one half of m times
on average, so in total 2mk. A comparison between the
proposed protocol and that in [7] is shown in the Table 1
above.

5 Conclusion

We introduced new efficient auction protocols based on
the BGN encryption and showed that they are approxi-

mately two fold more efficient than the proposed in [7]. As
a topic of future work, we will try to compose a secure auc-
tion protocol without using the mix-and-match protocol.
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