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Abstract— Stable matching algorithms are best known for their use in assigning graduating medical
students to their first hospital appointments. They are also widely used in the matching of groups of
men and women, employers and companies. At CT-RSA 2007, Matthew Franklin, Mark Gondree, and
Payman Mohassel presented an improved protocol of Golle’s private stable matching algorithm for the
privacy preserving computation of Gale-Shapley stable matching algorithm.

In this paper, we prove that when the number of matching authorities (MAs) is more than two, the
number of rounds of computation required for stable matching can be reduced to half, which is nearly
the same number of rounds needed for the Gale-Shapley stable matching algorithm.
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1 Introduction

Stable matching algorithms are most commonly ex-
plained using the state of bijection between two groups
of people, regardless of whether the groups are of men
and women, employers, companies, or medical school
graduates being appointed to hospitals. In this paper,
we consider one-to-one matching algorithm to solve a
model of one-to-one matchings. Throughout this pa-
per, we denote men as one group and women as the
other group.

Consider that there are n men and n women who try
to find their best matches. It would be perfect for each
person in both groups to find naturally their best part-
ner without having any conflict with the other people,
however, this is a very rare case. There is a probability
that two men or more will rank the same woman as
their best mate and vice versa.

David Gale and Lloyd Shapley [GS62] presented a
novel framework for solving the stable matching prob-
lem. The algorithm itself is very simple, by using the
lists of preference from men and women to find a sta-
ble matching result. However, in the Gale-Shapley
stable matching algorithm [GS62], the history of the
engagements during the execution of the algorithm is
known to everyone, which negates the privacy of each
rejected person and leaves the history open to all par-
ticipants. This leads that the stable matching algo-
rithm is vulnerable to manipulation [GI89]. Under cer-
tain circumstances, participants with the knowledge of
the preference lists of other participants have incen-
tives to change their own true preference list. In order
to output a stable matching result without revealing
any information, we need a secure protocol that shows
only the matching result to all participants, which is
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called a private stable matching algorithm. By adopt-
ing the Gale-Shapley algorithm [GS62], Golle [Go06]
and Matthew Franklin, Mark Gondree, and Payman
Mohassel [FGM07] presented their own variant of a pri-
vate stable matching algorithm. Both of these proto-
cols use the Paillier encryption scheme [Pa99] and re-
encryption mix networks as their cryptographic build-
ing blocks. The main difference between these two pro-
tocols is the number of fake participants introduced in
the protocols. We will discuss these protocols in Sec-
tion 2.

In our study, we note that Matthew Franklin, Mark
Gondree, and Payman Mohassel protocol [FGM07] can
be simplified in some way so that the number of rounds
of computation for stable matching is reduced by half,
which is almost the same as the number of rounds
needed for the original Gale-Shapley stable matching
algorithm [GS62].

2 Stable Matching Algorithms

In this section, we explain briefly the Gale-Shapley
algorithm [GS62], and review the private stable match-
ing algorithms presented by Golle [Go06] and Matthew
Franklin, Mark Gondree, and Payman Mohassel [FGM07].
All of these stable matching algorithms use preference
lists (every man ranks every woman, and every woman
ranks every man) as input and give a stable matching
result (there is always one, and there may be several).

Let A1,. . . ,An denote n men and B1,. . . ,Bn denote
n women. The men rank the women from most to least
desired, and vice versa. If man A1 has a preference list
(B1, B2, . . . , B3), it means that man A1 likes woman
B1 the most, while B3 is the least favorite woman. A
matching is called stable, when there is no unmatched
man and woman that like each other better than their
own current match.
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2.1 The Gale-Shapley Algorithm

The Gale-Shapley algorithm [GS62] was originally
known for solving the stable matching problem. In
this algorithm, men and women play different roles.
Simply, the algorithm can be expressed as ”proposals”
from men to women.

Men and women are divided into two groups, the
engaged group and the free group. All men and women
start from the free group. Whenever there is any man
in the free group, one of them is randomly selected.
Then, the selected free man proposes to the woman
whom he likes the most and has never proposed to be-
fore. Suppose the selected free man A proposes to B
(whom he never proposed before and he likes the most).
In this state there are two cases. The first case is when
the woman B is free. In this case, A and B are auto-
matically paired. The second case is when the woman
B is already engaged to another man A′. In this case,
using the woman B’s preference list, the man who pro-
posed to her A and the man who is currently engaged
to her A′ are compared. When A has a higher rank
than A′, B engages with A, while A′ is divorced and
grouped into the free group. On the other hand, if A
has a lower rank than A′, B will continue to be en-
gaged to A′, while A is considered to be rejected and
regrouped again into the free group. Next, another man
from the free group is randomly chosen and matched by
the same way. This manner of matching repeats until
all men and women are paired and no person remains
in the free group. The total round of matching is at
most n2 − n+ 1 [GI89].

2.2 Golle’s Private Stable Matching Algorithm

In order to retain the privacy of the participants’ in-
formation, this algorithm added independent parties
called Matching Authorities (MAs). By setting the
MAs as honest but curious parties, participants obtain
the stable matching result without knowing any other
information. Fake men are added to the other real men
and women in the matching algorithm. The total com-
munication complexity of this private stable matching
is O(n3).

2.3 Improved Efficiency for Golle’s Private Sta-
ble Matching

Matthew Franklin, Mark Gondree, and Payman Mo-
hassel showed that communication complexity of Golle’s
[Go06] main protocol is O(n5). In addition, they also
introduced their own variant protocol in which the com-
munication complexity is reduced. As participants,
fake women are added to Golle’s private stable match-
ing algorithm [Go06] (real men, real women, and fake
men). The computation complexity of their private
stable matching algorithm is O(n4

√
log n), while the

rounds of computation are 2n2.

3 Preliminaries

3.1 Models and Definition

We adopt the same network model as Matthew Franklin,
Mark Gondree, and Payman Mohassel [FGM07]. Once
the protocol starts, all participants send their encrypted
preference lists to one of the matching authority re-
ferred to DBMA, the role of which is to save the en-
crypted preference lists. All MAs other than the DBMA
execute a synchronous protocol among themselves to
compute a stable matching.

On the other hand, our security model is the same as
that used by Golle [Go06]. A stable matching protocol
is secure if it outputs a stable matching and reveals
no other information to a passive adversary than what
the adversary can learn from the matching and from
the preferences of the participants the adversary con-
trols.

Encryption

We let E denote the encryption function for a thresh-
old public-key encryption scheme that is additively ho-
momorphic, which is a threshold version [DJ01] [FPS01]
of the Paillier encryption scheme [Pa99]. Only when a
quorum of all MAs is reached, the decryption can be
executed.

Notation

Term O(f) denotes the asymptotic upper bound of
f that is not tight; ω(f) denotes the asymptotic lower
bound of f that is tight. In Section 3.2 below, un-
less noted, ”poly-log complexity” is in reference to the
security parameter for each primitive.

3.2 Primitives

Re-encryption Mix Network

In this paper, when the authorities mix some ci-
phertexts (Paillier), it means that the authorities run a
re-encryption mix network [Ne01] [JJR02], permuting
the ciphertexts according to a secret permutation such
that no individual authority knows. As we take a pas-
sive adversary, n ciphertexts can be mixed by t mixing
authorities in constant rounds and O(n) time, taking
advantage of parallel mixing techniques [GJ04]. The
total communication complexity of the parallel mixnet
is, O(tn) ciphertexts.

Private Oblivious Equality Test

Let E(m1) and E(m2) be two Paillier ciphertexts.
Define EQTEST(E(m1), E(m2)) = b where b = 1 if
m1 = m2 and b = 0 otherwise. EQTEST is a (chooser
private) oblivious test of plaintext equality [JS99] [Li03]
if it reveals the output to the MAs, without revealing
any other information to any other parties.

MPC Private Equality Test

Let E(m1) and E(m2) be two Paillier ciphertexts.
Define EEQTEST(E(m1), E(m2)) = E(b) where b =
1 if m1 = m2 and b = 0 otherwise. EEQTEST is the
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secure multiparty computation of the equality test if
the parties learn the output E(b), but no additional in-
formation regarding the plaintexts m1 and m2. [Kl05]
[CD01] both give constant-round protocols with poly-
log communication complexity for computing this func-
tion.

Private Oblivious Value Comparison

Let E(m1) and E(m2) be two Paillier ciphertexts.
Define COMPARE(E(m1), E(m2)) = b where b = 1 if
m1 < m2 and b = 0 otherwise. For our purposes, we
have 0 ≤ m1 and m2 ≤ n. Golle instantiates this primi-
tive by preparing n−1 ciphertexts, D1, . . . , Dn−1 where
Di = E(m1−m2−i); mixing these n ciphertexts; and fi-
nally running n parallel instances of EQTEST(Ei, E(0)).
If m1 < m2 then, for some 0< i ≤ n, one of these in-
stances returns 1. Otherwise, all instances return 0.

MPC Private Value Comparison

Let E(m1) and E(m2) be two Paillier ciphertexts.
Define ECOMPARE(E(m1), E(m2)) = E(b) where b
= 1 if m1 < m2 and b = 0 otherwise. ECOMPARE
is the secure multiparty computation of the less-than
function if parties learn the output E(b), but no ad-
ditional information regarding the plaintexts m1 and
m2. [Kl05] [DFNT05] both give constant-round proto-
cols with poly-log communication complexity for com-
puting this function.

Private Reduction of a Secret Modulo a Public
Integer

Let E(a) be a Paillier ciphertext, and q be an integer.
Define MOD(E(a), q) = E(a mod q). MOD is the se-
cure multiparty computation of the modular function
if our parties learn the output, but no additional infor-
mation regarding integer a. [Kl05], [ACS02] both give
protocols with poly-log communication complexity for
computing this function. The former has a poly-log
round complexity, and the latter is constant-round.

Strong Private Information Retrieval (SPIR) with
Sublinear Communication Complexity

Let δ be a database with N elements, and indexed
{0,. . . , N−1}. Let SPIRδm (b1,. . .,bl) represent Stern’s
symmetric private information retrieval protocol [St98].
As in any PIR protocol. a chooser holds a secret index
i, while the database learns nothing about which index
was accessed. Furthermore, the chooser knows nothing
regarding the other database elements.

In SPIRδm, index i is encoded by following a trick,
developed by Kushilevitz and Ostrovsky [KO97]. The
database is described as a series of m sized buckets
(the first m entry is in the first bucket, and so on).
If element i is the jth element in one of these buckets,
then b1,j = E(1) and b1,k = E(0) for all k 6= j. Define b1
= (b1,1, . . . , b1,m). We recurse, imagining the collection
of former buckets as, themselves, a series of m sized
buckets. The output of the protocol must be decrypted
by the chooser l times, to recover the element at index i.

Since we consider passive adversaries, we do not include
Stern’s interactive zero-knowledge proofs showing the
indices are well-formed as a part of SPIRδm. With
m = N1/l and l = O(

√
logN), the protocol has a total

communication complexity l = O(N
√

logN) and the

total communication complexity 2O(
√
logN .

4 New Private Stable Matching Algo-
rithm

4.1 Franklin-Gondree-Mohassel Algorithm

In this algorithm, the notations for A means men, for
B means women, and real groups are represented by
1,. . . , n. Fake groups are represented by n+ 1,. . . , 2n.
Thus, we have: real men(A1,. . . , An), real women(B1,. . . ,
Bn), fake men(An+1,. . . ,A2n), and fake women(Bn+1,. . . ,
B2n). As the initial setup, preference lists are gener-
ated as below.

Preference lists (For x ≥ 1)
Ax (Real preference list),(Bn+1,. . . , B2n in

any order)
Bx (Real preference list),(An+1,. . . , A2n in

any order)
An+x (Bn+2,. . . , B2n in any order),

(Bn+1),(B1,. . . , Bn in any order)
Bn+x (An+1,. . . , A2n in any order),

(A1,. . . , An in any order)

Algorithm

Initialization :
1. F1 = {A1} (man A1 is free).
2. Real men {A2, . . . , An} are engaged to fake women
{Bn+2, . . . , B2n}, respectively.
3. Fake men {An+1 . . . , A2n} are engaged to fake women
{B1, . . . , Bn}, respectively.

For k=1 to R:
a. Free man Ax in Fk proposes to By, the next woman
in his preference list to whom he has not yet proposed.
b. Let A′x denote the man to whom By is already en-
gaged.
Case 1. If By ranks Ax higher than A′x, she leaves A′x
and become engaged to Ax. Let Fk+1 = {A′x}.
Case 2. If By ranks Ax lower than A′x, she stays en-
gaged to A′x. Let Fk+1 = {Ax}.

In each round of matching, only one proposal is made.
Therefore, the number of free men in each round | Fk |
is 1. In [FGM07], it is claimed that once a fake man
proposes to fake woman Bn+1, it means that a sta-
ble matching is reached. The algorithm reaches stable
matching in at most 2n2 rounds where all real men are
engaged to real women and all fake men to fake women.
However, there are too many rounds where most of the
proposals are made by fake men. Such proposals in-
crease the number of rounds of matching.

4.2 Our Algorithm

As described in the Matthew Franklin, Mark Gondree,
and Payman Mohassel algorithm [FGM07], there are
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n real men, n real women, n fake men, and n fake
women with their respective preference lists. In our
algorithm, we use the same algorithm as the Matthew
Franklin, Mark Gondree, and Payman Mohassel algo-
rithm [FGM07] but a few changes are made in the pref-
erence lists. Our preference lists are described in the
following table.

Preference lists (For x ≥ 1; y ≥ 2)
Ax (Real preference list), (Bn+x)
Bx (Real preference list), (An+x)
An+1 (Bn+2,. . . , B2n in any order),(Bn+1),

(B1)
An+y (Bn+y),(Fake women other than Bn+y

in any order),(By)
Bn+x (An+x),(Fake men other than An+x

in any order),(Ax)
As you can see, the preferences for the fake groups

are set differently, so that fake men and fake women
rank the members with the same number as their best
mate, except for An+1. For example, fake man An+2

likes fake woman Bn+2 the best, and fake woman Bn+2

likes fake man An+2 the best. Consecutively, fake man
An+3 likes fake woman Bn+3 the best and fake woman
Bn+3 likes fake man An+3 the best, and so on. The
size of each preference list is reduced from 2n to n+ 1.
When each of the real men is engaged to a real woman,
and the fake men are engaged to the fake women, the
matching is said to be in a stable state. As a compari-
son, our algorithm reaches a stable matching in at most
n2 + n iterations.
Proposition. Once An+1 proposes to Bn+1, it is the

last round of matching.
Proof. The first point is that fake man An+1 ranks

fake woman Bn+1 as his last preference among all the
fake women while fake woman Bn+1 ranks fake man
An+1 as her first preference. The other point is the
preference lists of the fake men and fake women are
fixed in a way that the first preference of each person
is totally different, except for An+1. As a result, there
is no conflict among fake men. For instance, as fake
man An+2 ranks fake woman Bn+2 as his first prefer-
ence, fake woman Bn+2 also ranks fake man An+2 as
her first preference. By doing this, when fake men pro-
pose to the fake women, only one proposal is needed
for fake men to get engaged, moreover, fake men will
not be rejected by their first preference, except for fake
man An+1.

The statement that the matching result is stable is
exactly the same as that for the original Gale-Shapley
algorithm [GS62]. Matching becomes stable when real
men are engaged to real women, while fake men are en-
gaged to fake women. Notice that once fake men other
than An+1 are engaged to fake women, they will stay
engaged until the last round, leaving only real men to
find their best mates. Nevertheless, let us assume that
real man Ax is engaged to a fake woman Bn+x when the
algorithm ends. This indicates that fake woman Bn+x
was never proposed to any fake man. Considering that
the number of fake men and fake women are the same,

by the end of the matching process, all fake men must
have proposed to the fake women including Bn+x. Es-
pecially in our proposed algorithm, at least fake man
An+1 must propose to fake woman Bn+x once and must
have been rejected. So fake woman Bn+x prefers real
man Ax to fake man An+1, which is contrary to the
assumption that all fake women rank real men behind
the fake men.

In this algorithm, the proposals among real men and
real women are at most n2 − n + 1. This is the same
as that for the Gale-Shapley stable matching algorithm
[GS62] [GI89]. On the other hand, the preference lists
of fake men and fake women are fixed as above, re-
sulting in fake man An+1 executing at most n propos-
als, while the other fake men take only one proposal.
Thus, the total number of proposals needed for fake
men and fake woman to finish is 2n − 1. Therefore,
during the last round of the proposals, fake man An+1

will be proposing to Bn+1 as his last preference, as in
this turn, An+1 have been rejected by all fake women
except for Bn+1. This is the reason why, in the n2 + n
rounds of matching, stable matching is reached.

We simply fixed the preference lists of fake men and
fake woman in order to reduce the rounds of compu-
tation for stable matching. Note that MAs can jointly
randomize the best mate for each fake man and woman
to hide fake people’s preference lists from any single
matching authority.

For the secure implementation on the above algo-
rithm, we need to run the algorithm for the same num-
ber of rounds for all inputs. By doing this, we will avoid
leaking the number of proposals necessary to reach a
stable matching for a specific input. But, note that
once fake man An+1 proposes to fake woman Bn+1,
no free man will remain and the algorithm has to end.
A simple fix is to add an extra fake man A2n+1, and
initially let him be engaged to woman Bn+1. We set
((E(2n+ 1), E(0)), E(n+ 1), E(0)) be the engaged bid
for fake woman Bn+1 and fake man A2n+1. Here we set
the rank of fake man A2n+1 to 0 (as the most favorite
man). By doing this, when An+1 proposes to Bn+1,
Bn+1 will always prefer fake man A2n+1 to fake man
An+1. The advantage is that there is always a free man
who will propose next. This is a useful invariant for the
secure implementation in Section 5.

4.3 Privacy Preserving Protocol

In this section, we present the privacy preserving
implementation of the Gale-Shapley [GS62] variants,
which we adopt the same model from Matthew Franklin,
Mark Gondree, and Payman Mohassel private stable
matching algorithm [FGM07].

Notation and Bids. Let ri,j ∈ [0, . . . , n − 1] be
the rank given to woman Bj by man Ai. Let si,j ∈
[0, . . . , n − 1] be the rank given to man Ai by woman
Bj . In this convention, the highest possible rank is 0,
and the lowest is n − 1. Define the (free) bid for man
Ai as Wi = (E(i), E(ρ)), where initially, ρ = 0. The
engaged bid (Wi, E(j), E(sj,i)) denotes that man Ai is
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engaged to woman Bj . Let Fk and Ek denote the sets
of free and engaged bids in round k of the algorithm,
respectively.

Input Submission and Initialization. Each man
sends his preference list ai and each woman sends her
preference list qi to the MAs (ai = (E(ri,1), . . . , E(ri,n)),
qi = (E(s1,i), . . . , E(sn,i))). The MAs generate the free
bids for A1 and the engaged bid for man Ai, for i 6= 1.
Then the MAs jointly create the preferences for the fake
men and fake women. The MAs here set the preference
lists of fake man and fake woman according to the rule
in Section 4.2. Let one matching authority collect and
organize these lists, and call this authority database δ
Let δ =[(a1, q1,. . .,a2n, q2n)]. Thus δ[4n(i − 1) + (j −
1)] = E(ri,j) and δ[4n(i−1)+(j−1)+n+1] = E(sj,i),
for i, j ≤ n+ 1.

Open a Bid. Given a free bid, we must recover E(j)
and E(sj,i) (E(j) refers to the encrypted index of the
woman at rank ρ on man Ai’s preference list). It hap-
pens that E(j) is located at δ[4n(i− 1) + (ρ− 1)] and
E(sj,i) is located at δ[4n(i − 1) + (j − 1) + 2n]. We
can calculate E(4n(i−1) +ρ−1) using the Paillier ad-
dictive homomorphism, given E(i) and E(ρ)). We can
recover E(j) by accessing the database at this secret
index, using the protocol below. Similarly, given E(j)
we can calculate E(4n(i− 1) + (j− 1) + 2n) and, again
recover E(sj,i) by accessing the database at this secret
index.

Access Database at Secret Index. Given E(x), we
can generate a series of indices b1,. . . ,bl which singulate
the element at index x using the index conversion pro-
cedure below, without learning anything regarding x.
Then let y = SPIRδm(b1, . . . , bl). We jointly decrypt
y, l times, to recoverδ[x].

Breaking an Engagement. Let (Wi, E(j), E(sj,i))
be an engaged bid. We break this engagement by dis-
carding E(j), E(sj,i) and keeping Wi. We also ”safely”
update E(ρ) by increasing it by the value 1-b, where
E(b) = EEQTEST(E(ρ), E(n)), using Paillier’s addic-
tive homomorphism (i.e. multiply E(ρ) by E(1) to ob-
tain E(ρ + 1)). That is , we clearly increase the next
desired rank ρ when it is less than n ; otherwise, we
do not. This is a modification from the presentation in
[Go06]. If we did not increase safely, the new n2 loop
bound generates the possibility that we may increase
some men’s ρ more than n times which would lead to
an error.

Find a Conflicting Bid. Given a newly created en-
gaged bid (Wi, E(j), E(sj,i)), there will be exactly one
existing engaged bid that conflicts (Wi′ , E(j′), E(sj′,i′))
∈Ek where j = j′. We can find this by preparing set
{E(j′) | (Wi′ , E(j′), E(sj′,i′)) ∈ Ek}, mixing the 2n−1
ciphertexts in this set, and then performing 2n−1 par-
allel instances of EQTEST(E(j), E(j′)) for each E(j′)
in the mixed set.

Resolve a Conflict. Given two random conflicting
engaged bids, (Wi, E(j), E(sj,i)) and (Wi′ , E(j), E(sj,i′)),
we determine the ”winner” and ”loser” of the con-
flict by performing the following. Jointly compute b =
COMPARE (E(sj,i), E(sj,i′)). If b = 1 then woman j
prefers man i′ over man i and, we call the first engaged
bid the ”loser”. Otherwise, we call the second engaged
bid the ”loser”and the remaining bid the ”winner”.

Secure Index Conversion. Given E(x), we can se-
curely calculate the indices b1,. . .,bl that are used as
input to the protocol SPIRδm. Recall that bk =(bk,1,
. . . , bk,m) is the encryption of an m-length bit-string
of Hamming weight 1, selecting the appropriate item
from each m sized bucket at step k. If we consider the
buckets to be arranged consecutively (the first m ele-
ments in the first bucket, and so on) then bk,j=E(ck,j)
where

ck,j = (x mod mk ?
= (j−1)mk+1+

k−1∑
h=1

m∑
i=1

(i−1)ch,im
h−1)

Thus bk can be calculated using MOD, EEQTEST and
the vectors bj for j < k calculated in the earlier rounds.
In each round, this procedure takes polylog work with
polylog communication complexity.

Full Privacy Preserving Implementation. The se-
cure implementation of our new variant of Gale-Shapley
[GS62] is assembled using the protocols indicated above,
according to the algorithm below.

Input submission and initialization
For k = 1 to n2 + n; perform the following.
1. Select the single free bid Wi from Fk.
2. Open Wi to recover E(j) and E(sj,i) from the
database.
3. Create engaged bid (Wi, E(j), E(sj,i)).
4. Find conflicting engaged bid (Wi′ , E(j), E(sj,i′)).
5. Mix these two engaged bids.
6. Resolve the conflict to find the ”winner” and ”loser”.
7. Break the engagement for the loser and add this free
bid to Fk+1.
8. Add the winner to Ek.
9. Mix the engaged bids.
10. Let Ek+1 = Ek.
MAs jointly decrypt the all engaged bids in Ek then
announce the matching result.

5 Security Definition

Note that neither each participants (men and women)
nor matching authority can retrieve any information re-
garding the preference lists and the history of engage-
ments. This protocol is said to be secure if there is no
polynomial time adversary that can break privacy with
a non-negligible advantage.

5



Definition

If the advantage of the adversary Adv(τ) is negligible
then this stable matching algorithm is secure.

Adv(τ) = Pr[b′ = b]− 1/2

First of all, adversary creates two challenge preference
lists as pm0, pm1 where pm0 and pm1 each represent one
preference list (pm0 = (. . . , n1 . . . , n2, . . .), and pm1 =
(. . . , n2, . . . , n1, . . .)). We notice that n1 and n2 writ-
ten in above represents ranks of two participants in a
person which are flipped. The secure games described
above must be done with condition, that the flipping
of n1 and n2 does not affect the result of the stable
matching algorithm.

Then the challenger chooses one bit b ∈ {0,1}, en-
crypt pmb and executes stable matching algorithm. Ad-
versary outputs guess of b′. Adversary wins if b = b′.

6 Conclusion

We changed the preference lists from the network
model presented by Matthew Franklin, Mark Gondree,
and Payman Mohassel [FGM07], and reduced the num-
ber of rounds of computation from 2n2 to n2 + n. In
future work, we will try to compose a private stable
matching algorithm by using BGN encryption instead
of the Paillier encryption.
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