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1 Introduction

1.1 Background

Recently, as the Internet has expanded, many re-
searchers have become interested in secure auction pro-
tocols and various schemes have been proposed to en-
sure the safe transaction of sealed-bid auctions. A se-
cure auction is a protocol in which each player can find
only the highest bid and its bidder (called the first price
auction) or the second highest bid and the first price
bidder (called the second price auction). There is also
a generalized auction protocol called M +1st price acu-
tion. The M + 1st price auction is a type of sealed-bid
auction for selling M units of a single kind of goods,
and the M + 1st highest price is the winning price. M
bidders who bid higher prices than the winning price
are the winning bidders, and each winning bidder buys
one unit of the goods at the M + 1st winning price.

A simple solution is to assume a trusted auctioneer.
Bidders encrypt their bids and send them to the auc-
tioneer, and the auctioneer decrypts them to decide
the winner. To remove the trusted auctioneer, some
secure multi-party protocols have been proposed. The
common essential idea is the use of threshold cryptosys-
tems, where a private decryption key is shared by the
players. Jakobsson and Juels proposed a secure MPC
protocol to evaluate a function comprising a logical cir-
cuit, called mix-and-match [6]. As for a target function
f and the circuit that calculates f , Cf , all players eval-
uate each gate in Cf based on their encrypted inputs
and the evaluations of all the gates in turn lead to the
evaluation of f . Based on the mix-and-match protocol,
we can easily find a secure auction protocol by repeat-
ing the millionaires’ problem for two players. Kurosawa
and Ogata suggested the ”bit-slice auction”, which is
an auction protocol that is more efficient than the one
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based on the millionaire’s problem [8].
Boneh, Goh and Nissim suggested a public evalua-

tion system for 2-DNF formula based on an encryption
of Boolean variables [3]. Their protocol is based on Pal-
lier’s scheme [13], so it has additive homomorphism in
addition to the bilinear map, which allows one multipli-
cation on encrypted values. As a result, this property
allows the evaluation of multivariate polynomials with
the total of degree two on encrypted values.

In this paper, we introduce an efficient secure auc-
tion protocol for M + 1st price auction, in which if the
bidding price is an integer up to p and the number of
bidders is m, the complexity of our protocol is a poly-
nomial of log p and m

1.2 Related works

As related works, there are many secure auction pro-
tocols, however, they have problems such as those de-
scribed hereafter. The secure auction scheme for first
price auction proposed by Franklin and Reiter [5] does
not provide full privacy, since at the end of an auction
players can know the other players’ bids. Naor, Pinkas
and Sumner achieved a secure second price auction
by combining Yao’s secure computation with oblivious
transfer assuming two types of auctioneers [10]. How-
ever, the cost of the bidder communication is high be-
cause it proceeds bit by bit using the oblivious transfer
protocol. Juels and Szydlo improved the efficiency and
security of this scheme with two types of auctioneers
through verifiable proxy oblivious transfer [7], which
still has a security problem in which if both types of
auctioneers collaborate they can retrieve all bids. Mit-
sunaga, Manabe, Okamoto suggested secure auction
protocols for first and second price auction. They ap-
plied Boneh-Goh-Nissim Encryption to bit-slice auc-
tion to improve an efficiency of calculation cost [11].
Lipmaa, Asokan and Niemi proposed an efficient M +
1st secure auction scheme [9]. In their scheme, the
trusted auction authority can know the bid statistics.
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Abe and Suzuki suggested a secure auction scheme for
the M + 1st auction based on homomorphic encryp-
tion [1]. However in their scheme, a player’s bid is
not a binary expression. So, its time complexity is
O(m2k) for a m-player and k-bit bidding price auction.
Tamura, Shiotsuki and Miyaji proposed an efficient
proxy-auction for first price acution [15]. This scheme
only considers the comparison between two sealed bids,
the current highest bid and a new bid. However, this
scheme does not consider multiple players because of
the property of the proxy-auction.

1.3 Our result

This paper presents an efficient secure auction pro-
tocol for M +1st price auction. In our proposed proto-
col, bidding prices are represented as binary expression.
Thus, if the bidding price is an integer up to p and the
number of bidders is m, the complexity of our proto-
col is a polynomial of log p and m, while in previous
secure M +1st price auction protocols, the complexity
is a polynomial of p and m.

2 Preliminaries

2.1 The model of auctions and outline of auc-
tion protocols

This model involves n players, denoted by P1, P2, ..., Pn

and assumes that there exists a public board. The play-
ers agree in advance on the presentation of the target
function, f as a circuit Cf . The aim of the protocol is
for players to compute f(B1, ..., Bn) without revealing
any additional information. Its outline is as follows.

1. Input stage: Each Pi(1 ≤ i ≤ n) computes
ciphertexts of the bits of Bi and broadcasts them
and proves that the ciphertext represents 0 or 1
by using the zero-knowledge proof technique in
[3].

2. Mix and Match stage: The players blindly
evaluates each gate, Gj , in order.

3. Output stage: After evaluating the last gate
GN , the players obtain ON , a ciphertext encrypt-
ing f(B1, ..., Bn). They jointly decrypt this ci-
phertext value to reveal the output of function
f .

2.1.1 Requirements for the encryption func-
tion

Let E be a public-key probabilistic encryption func-
tion. We denote the set of encryptions for a plaintext m
by E(m) and a particular encryption of m by c ∈ E(m)
.

Function E must satisfy the following properties.

1.Homomorphic property There exist polynomial
time computable operations, −1 and ⊗, as fol-
lows. For a large prime q,

1. If c ∈ E(m), then c−1 ∈ E(−m mod q).

2. If c1 ∈ E(m1) and c2 ∈ E(m2), then c1 ⊗
c2 ∈ E(m1 + m2 mod q).

For a positive integer a, define

a · e = c ⊗ c ⊗ · · · ⊗ c︸ ︷︷ ︸
a

.

2.Random re-encryption Given c ∈ E(m), there is
a probabilistic re-encryption algorithm that out-
puts c′ ∈ E(m), where c′ is uniformly distributed
over E(m).

3.Threshold decryption For a given ciphertext c ∈
E(m), any t out of n players can decrypt c along
with a zero-knowledge proof of the correctness.
However, any t-1 out of n players cannot decrypt
c.

2.1.2 MIX protocol
The MIX protocol [4] takes a list of ciphertexts, (ξ1, ...., ξL),

and outputs a permuted and re-encrypted list of the
ciphertexts (ξ′1, ..., ξ

′
L) without revealing the relation-

ship between (ξ1, ..., ξL) and (ξ′1, ..., ξ
′
L), where ξi or ξ′i

can be a single ciphertext c, or a list of l ciphertexts,
(c1, ..., cl), for some l > 1. For all players to verity the
validity of (ξ′1, ..., ξ

′
L), we use the universal verifiable

MIX net protocol described in [14].

2.1.3 Plaintext equality test
Given two ciphertexts c1 ∈ E(v1) and c2 ∈ E(v2),

this protocol checks if v1 = v2. Let c0 = c1 ⊗ c−1
2 .

1. (Step 1) For each player Pi (where i = 1,...,n):

Pi chooses a random element ai ∈ Z∗
q and com-

putes zi = ai · c0. He broadcasts zi and proves
the validity of zi in zero-knowledge.

2. (Step 2) Let z = z1 ⊗ z2 ⊗ · · · ⊗ zn. The players
jointly decrypt z using threshold verifiable de-
cryption and obtain plaintext v. Then it holds
that

v =
{

0 if v1 = v2

random otherwise

2.1.4 Mix and Match Stage
For each logical gate, G(x1, x2), of a given circuit, n

players jointly computes E(G(x1, x2)) from c1 ∈ E(x1)
and c2 ∈ E(x2) keeping x1 and x2 secret. For simplic-
ity, we show the mix-and-match stage for AND gate.

1. n players first consider the standard encryption
of each entry in the table shown below.

2. By applying a MIX protocol to the four rows of
the table, n players jointly compute blinded and
permuted rows of the table. Let the ith row be
(a′

i, b
′
i, c

′
i) for i = 1,...,4.

3. n players next jointly find the row i such that
the plaintext of c1 is equal to that of a′

i and the
plaintext of c2 is equal to that of b′i by using the
plaintext equality test protocol.
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Table 1: Mix-and-match table for AND

x1 x2 x1 ∧ x2

a′
1 ∈ E(0) b′1 ∈ E(0) c′1 ∈ E(0)

a′
2 ∈ E(0) b′2 ∈ E(1) c′2 ∈ E(0)

a′
3 ∈ E(1) b′3 ∈ E(0) c′3 ∈ E(0)

a′
4 ∈ E(1) b′4 ∈ E(1) c′4 ∈ E(1)

4. For the row i, it holds that c′i ∈ E(x1 ∧ x2).

2.2 Evaluating 2-DNF formulas on ciphertexts

Given encrypted Boolean variables x1, ..., xn ∈ {0, 1},
a mechanism for public evaluation of a 2-DNF formula
was suggested in [3]. They presented a homomorphic
public key encryption scheme based on finite groups of
composite order that supports a bilinear map. In addi-
tion, the bilinear map allows for one multiplication on
encrypted values. As a result, their system supports ar-
bitrary additions and one multiplication on encrypted
data. This property in turn allows the evaluation of
multivariate polynomials of a total degree of two on
encrypted values.

2.2.1 Bilinear groups
Their construction makes use of certain finite groups

of composite order that supports a bilinear map. We
use the following notation.

1. G and G1 are two (multiplicative) cyclic groups
of finite order n.

2. g is a generator of G.

3. e is a bilinear map e : G × G → G1.

2.2.2 Subgroup decision assumption
We define algorithm G such that given security pa-

rameter τ ∈ Z+ outputs a tuple
(q1, q2, G, G1, e) where G, G1 are groups of order n =
q1q2 and e : G × G → G1 is a bilinear map. On input
τ , algorithm G works as indicated below,

1. Generate two random τ -bit primes, q1 and q2 and
set n = q1q2 ∈ Z.

2. Generate a bilinear group G of order n as de-
scribed above. Let g be a generator of G and
e : G × G → G1 be the bilinear map.

3. Output (q1, q2, G, G1, e).
We note that the group action in G and G1 as well
as the bilinear map can be computed in polyno-
mial time.

Let τ ∈ Z+ and let (q1, q2, G, G1, e) be a tuple produced
by G where n = q1q2. Consider the following problem.
Given (n, G, G1, e) and an element x ∈ G, output ’1’ if
the order of x is q1 and output ’0’ otherwise, that is,
without knowing the factorization of the group order n,
decide if an element x is in a subgroup of G. We refer
to this problem as the subgroup decision problem.

2.2.3 Homomorphic public key system
We now describe the proposed public key system

which resembles the Pallier [13] and the Okamoto-Uchiyama
encryption schemes [12]. We describe the three algo-
rithms comprising the system.

1.KeyGen Given a security parameter τ ∈ Z, run G
to obtain a tuple (q1, q2, G, G1, e). Let n = q1q2.
Select two random generators, g and u

R←− G and
set h = uq2 . Then h is a random generator of
the subgroup of G of order q1. The public key is
PK = (n, G, G1, e, g, h). The private key is SK
= q1.

2.Encrypt(PK,M) We assume that the message space
consists of integers in set {0, 1, ..., T} with T < q2.
We encrypt the binary representation of bids in
our main application, in the case T = 1. To en-
crypt a message m using public key PK, select a
random number r ∈ {0, 1, ..., n− 1} and compute

C = gmhr ∈ G.

Output C as the ciphertext.

3.Decrypt(SK,C) To decrypt a ciphertext C using
the private key SK = q1, observe that Cq1 =
(gmhr)q1 = (gq1)m. Let ĝ = gq1 . To recover m,
it suffices to compute the discrete log of Cq1 base
ĝ.

2.2.4 Homomorphic properties
The system is clearly additively homomorphic.

Let (n, G, G1, e, g, h) be a public key. Given encryp-
tions C1 and C2 ∈ G1 of messages m1 and m2 ∈
{0, 1, ..., T} respectively, anyone can create a uniformly
distributed encryption of m1 + m2 mod n by comput-
ing the product C = C1C2h

r for a random number
r ∈ {0, 1, ..., n − 1}. More importantly, anyone can
multiply two encrypted messages once using the bilin-
ear map. Set g1 = e(g, g) and h1 = e(g, h). Then g1 is
of order n and h1 is of order q1. Also, write h = gαq2

for some (unknown)α ∈ Z. Suppose we are given two
ciphertexts C1 = gm1hr1 ∈ G and C2 = gm2hr2 ∈ G.
To build an encryption of product m1 ·m2 mod n given
only C1 and C2, 1) select random r ∈ Zn, and 2) set
C = e(C1, C2)hr

1 ∈ G1. Then

C = e(C1, C2)hr
1 = e(gm1hr1 , gm2hr2)hr

1

= gm1m2
1 hm1r2+r2m1+q2r1r2α+r

1 = gm1m2
1 hr′

1 ∈ G1

where r′ = m1r2 + r2m1 + q2r1r2α + r is distributed
uniformly in Zn as required. Thus, C is a uniformly dis-
tributed encryption of m1m2 mod n, but in the group
G1 rather than G (this is why we allow for just one
multiplication). We note that the system is still addi-
tively homomorphic in G1. For simplicity, in this paper
we denote an encryption of message m in G as EG(m)
and one in G1 as EG1(m).
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2.3 Key sharing

In [2], efficient protocols are presented for a number
of players to generate jointly RSA modulus N = pq
where p and q are prime, and each player retains a
share of N . In this protocol, none of the players can
know the factorization of N . They then show how the
players can proceed to compute a public exponent e
and the shares of the corresponding private exponent.
At the end of the computation the players are con-
vinced that N is a product of two large primes by us-
ing zero-knowledge proof. Their protocol was based
on the threshold decryption that m out of m players
can decrypt the secret. The cost of key generation for
the shared RSA private key is approximately 11 times
greater than that for simple RSA key generation. How-
ever the cost for computation is still practical. We use
this protocol to share private keys among auction man-
agers.

3 New efficient auction protocol

In this section, we show an efficient M + 1st price
auction based on bit-slice auction protocols.

3.1 Proposed M + 1st price auction protocol

We define three types of player’s status on i-th bit as
Wj(Winner), Cj(Candidate) and Sj(Survivor) shown
as below and the numbers of players in Wj and Sj as
| Wj | and | Sj |.
the Definition of Status:

¯
Wj [1...m]: Wj [i]=1 if player Pi is decided to be a

winner by upper j bits of the bids.
Cj [1...m]: Cj [i]=1 if player Pi is not decided to be a

winner but has a possibility of M + 1st highest bidder
by upper j bits of the bids.

Sj [1...m]: Sj [i]=1 if Cj [i]=1 and j-th bit of Pi’s bid
is 1.

Let | Wj | and | Sj | be the number of 1’s in Wj and
Sj , respectively.
Suppose that BM+1st = (b(k−1)

M+1st, ..., b
(0)
M+1st)2 is the

M + 1st highest bidding price and a bid of a player
i is Zi = (z(k−1)

i , ..., z
(0)
i )2, where ()2 is the binary ex-

pression. The winner and winning price are found by
the following protocol.

As initial setting, we set Wk[i]=0 (1 ≤ i ≤ m) and
Ck[i]=1 ( 1 ≤ i ≤ m).
For j = k-1 to 0

Sj [i]=Cj+1[i] * z
(j)
i (1 ≤ i ≤ m)

if | Wj+1 | + | Sj | > M then
b
(j)
M+1st=1

Cj [i] = Sj [i] ( 1 ≤ i ≤ m)
Wj [i] = Wj+1[i] (1 ≤ i ≤ m)

else
b
(j)
M+1st=0

Wj [i] = Wj+1[i] + Sj [i] (1 ≤ i ≤ m)
Cj [i] = Cj+1[i] - Sj [i] (1 ≤ i ≤ m)

end

If the number of Winners on (j+1)-th bit and Survirors

on j-th bit is more than M , we keep Winners remained
and update Candidates to eliminate players i in a set
of (Cj [i] − Sj [i]), because they have no possibility to
win the auction.
If the number of Winners on (j+1)-th bit and Survirors
on j-th bit is less than or equal to M , Survivors on j-
th bid are determined as Winners, so we update Wj

as Wj+1[i] + Sj [i] and eliminate players i of Sj [i] from
Cj+1[i].

3.2 Secure M + 1st price auction using 2-DNF
scheme and mix-and-match protocol

We assume n players, P1, ..., Pn and a set of auc-
tion managers, AM . The players bid their encrypted
prices and publish them. The AM runs an auction
with the encrypted bids and after the auction jointly
decrypts the results of the protocol. Players find the
winning price (the M + 1st price) and the winners by
decrypting the results. To maintain secrecy of the play-
ers’ bidding prices through the protocol, we need to
use the mix-and-match protocol. Here, we define three
types of new tables, MAP1 and MAP2. In the pro-
posed protocol, the MAP1 and MAP2 tables are cre-
ated among AM before an auction. The AM jointly
computes values in the mix-and-match table for dis-
tributed decryption of plaintext equality test. The
function of table MAP1, shown in Table 2, is a map-
ping x1 ∈ {EG1(0), EG1(1)} → x2 ∈ {EG(0), EG(1)}.
The table MAP2, shown in Table 3, is the one for
mapping x1 ∈ {EG1(0), EG1(1), ..., EG1(m)} → x2 ∈
{EG(0), EG(1)}. These tables can be constructed using
the mix-and-match protocol because the Boneh-Goh-
Nissim encryption has homomorphic properties.

3.2.1 Setting
AM jointly generates and shares private keys among

themselves using the technique described in [2].

3.2.2 Bidding Phase

Suppose that BM+1st = (b(k−1)
M+1st, ..., b

(0)
M+1st)2 is the

M + 1st highest bidding price and a bid of a player i

is Zi = (z(k−1)
i , ..., z

(0)
i )2, where ()2 is the binary ex-

pression. Each player Pi computes a ciphertext of his
bidding price, Zi, as

ENCi = (bk−1
i , ...., b0

i )

where bj
i ∈ EG(z(j)

i ), and publishes ENCi on the bul-
letin board. He also proves in zero-knowledge that z

(j)
i

= 0 or 1 by using the technique described in [3].

3.2.3 Opening phase
Let Ck = (ck

1 , .., ck
m), where each ck

i ∈ EG(1) and
Wk = (wk

1 , .., wk
m), where each wk

i ∈ EG1(0).
(Step 1) For j = k -1 to 0, perform the following.
(Step 1-a) For Cj = (cj

1, ..., c
j
m), AM computes sj

i =
Mul(bj

i , c
j
i ) for each player i, and

Sj = (Mul(cj
1, b

j
1), ...,Mul(cj

m, bj
m))
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Table 2: Table for MAP1

x1 x2

a1 ∈ EG1(0) b1 ∈ EG(0)
a2 ∈ EG1(1) b2 ∈ EG(1)

Table 3: Table for MAP2

x1 x2

a1 ∈ EG1(0) b1 ∈ EG(0)
a2 ∈ EG1(1) b2 ∈ EG(0)

· · · bi ∈ EG(0)
aM+1 ∈ EG1(M) bM+1 ∈ EG(0)

aM+2 ∈ EG1(M + 1) bM+2 ∈ EG(1)
· · · bi ∈ EG(1)

am+1 ∈ EG1(m) bm+1 ∈ EG(1)

hj = Mul(bj
1, c

j
1) ⊗ · · · ⊗ Mul(bj

m, cj
m)

dj = wj
1 ⊗ · · · ⊗ wj

m

(Step 1-b) The AM uses table MAP1 for sj
i for each

i and finds the values of s̃j
i . Let S̃j = (s̃j

1, ..., s̃
j
m).

(Step 1-c) AM uses table MAP2 for dj ⊗ hj and de-
crypts the output value. If the output value is 0, the
number of winners and survivors are less than M + 1.
Then, AM updates
Wj = Wj+1 + Sj = (wj+1

1 ⊗ sj
1, .., w

j+1
m ⊗ sj

m)
Cj−1 = Cj − S̃j = (cj

1 ⊗ (s̃j
1)

−1, .., cj
m ⊗ (s̃j

m)−1)
b
(i)
M+1st = 0

If the output value is 1, then
Wj = Wj+1 = (wj+1

1 , .., wj+1
m )

Cj−1 = S̃j = (s̃j
1, ..., s̃

j
m)

b
(i)
M+1st = 1

(Step 2) For the final W0 = (w0
1, ..., w

0
m), AM de-

crypts each w0
i with verification protocols and obtains

the winners of the auction. Pi is the winners if and only
if plaintexts of w0

i = 1 and
∑

w0
i = M . The M + 1st

highest price is obtained as BM+1st = (b(k−1)
M+1st, ..., b

(0)
M+1st)2.

Verification protocols
Verification protocols are the protocols for players to
confirm that AM decrypts the ciphertext correctly. By
using the protocols, each player can verify the results of
the auction are correct. We denote b as a palintext and
C as a BGN encryption of b (C = gbhr), where g, h and
r are elements used in BGN scheme and f = C(gb)−1.
Before a player verifies whether b is the plaintext of
C, the player must prove that a challenge ciphertext
C ′ = gxfr is created by himself with zero-knowledge
proof that he has the value of x.

1. A player proves that he has random element x ∈
Z∗

n with zero-knowledge proof.

2. The player computes f = C(gb)−1 from the pub-
lished values, h, g and b, and select a random

integer r ∈ Z∗
n. He sends C ′ = gxfr to AM .

3. The AM decrypts C ′ and sends value x′ to the
player.

4. The player verifies whether x = x′. AM can de-
crypt C ′ correctly only if order(f) = q1, which
means that the AM correctly decrypts C and
publishes b as the plaintext of C.

3.3 Security

1. Privacy for bidding prices
Each player can not retrieve any information ex-
cept for the winners and the M+1st highest price.
An auction scheme is secure if there is no poly-
nomial time adversary that breaks privacy with
non-negligible advantage ϵ(τ). We prove that the
privacy for bidding prices in the proposed auction
protocols under the assumption that BGN en-
cryption with the mix-and-match oracle is seman-
tically secure. Given a message m, the mix-and-
match oracle receives an encrypted value x1 ∈
EG1(m) and returns the encrypted value x2 ∈
EG(m) according to the mix-and-match table shown
in Table 3. (which has the same function as
MAP2). Given a message m and the ciphertext
x1 ∈ EG1(m), the function of mix-and-match ta-
ble is to map x1 ∈ EG1(m) → x2 ∈ EG(m).
The range of the input value is supposed to be
{0,1,...,m} and the range of the output is {0,1}.
We do not consider cases where the input val-
ues are out of the range. Using this mix-and-
match oracle, an adversary can compute any logi-
cal function without the limit where BGN encryp-
tion scheme can use only one multiplication on
encrypted values. MAP1 can also be computed if
the range of the input value is restricted in {0,1}.
Here, we define two semantic secure games and
advantages for BGN encryption scheme and the
proposed auction protocols. We also show that
if there is adversary B that breaks the proposed
auction protocol, we can compose adversary A
that breaks the semantic security of the BGN en-
cryption with the mix-and-match oracle by using
B..

Definition 1
Let Π = (KeyGen,Encrypt,Decrypt) be a BGN
encryption scheme, and let AO1 = (AO1

1 , AO1
2 ),

be a probabilistic polynomial-time algorithm, that
can use the mix-and-match oracle O1.

BGN-Adv(τ) = Pr[EXPTA,Π(τ) ⇒ 1] − 1/2

where, EXPTA,Π is a semantic security game of
the BGN encryption scheme with the mix-and-
match oracle shown in Fig. 1.
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(PK,SK) ← KeyGen
(m0,m1, s) ← Ao1

1 (PK)
b ← {0, 1}

c ← Encrypt(PK,mb)
b′ ← Ao1

2 (c, s)
return 1 iff b = b′

Figure 1: EXPTA,Π

We then define an adversary B for an auction
protocol and an advantage for B.

Definition 2
Let Π = (KeyGen,Encrypt,Decrypt) be a BGN
encryption scheme, and let B be two probabilistic
polynomial-time algorithm B1 and B2.

Auction-Adv(τ) = Pr[EXPTB,Π = 1] − 1/2

where EXPTB,Π is a semantic security game of
the privacy of the auction protocol shown in Fig.
2.

First of all, B1 generates k-bit integers, b1, b2, ..., bm−1

as plaintexts of bidding prices for player 1 to
m−1, and two challenge k-bit integers as bm0 , bm1

where bm0 and bm1 are the same bits except for
i-th bit mi

0 and mi
1. We assume bm0 and bm1 are

not the M+1st highest price. Then the auction is
executed with (Encrypt(PK, b1), Encrypt(PK, b2), ...,
Encrypt(PK, bm−1), Encrypt(PK, bmb

)) as the play-
ers’ encrypted bidding prices where b

r←− {0,1}.
After the auction, B2 outputs b’ ∈ {0,1} as a
guess for b. B wins if b = b’.

Theorem 1 The privacy of the auction protocols
is secure under the assumption that the BGN en-
cryption is semantically secure with a mix-and-
match oracle.

We show if there is adversary B that breaks the
security of the proposed auction protocol, we can
compose adversary A that breaks the semantic
security of the BGN encryption with the mix-
and-match oracle. A receives two challenge k-
bit integers as bm0 and bm1 from B and then A
uses mi

0 and mi
1 as challenge bits for the chal-

lenger of the BGN encryption. Then A receives
Encrypt(PK,mi

b) and executes a secure auction
protocol with the mix-and-match table. In the
auction, when decrypted values are needed, A
can calculate them since he knows all the input
values, b1, b2, ..., bm−1 except the i-th bit of bmb

.
Through the protocol, B observes the calculation
of the encrypted bids and the results of the auc-
tion. After the auction, B outputs b′, which is
the guess for b. A outputs b′, which is the same
guess with B’s output for bmb

. If B can break the

privacy of the bidding prices in the proposed auc-
tion protocol with advantage ϵ(τ), A can break
the semantic security of the BGN encryption with
the same advantage.

2. Correctness
For correct players’ inputs, the protocol outputs
the correct winner and price. From Theorem 1
introduced in Section 1.4, the bit-slice auction
protocol obviously satisfies the correctness.

3. Verification of the evaluation
To verify whether the protocol works, players need
to validate whether the AM decrypts the evalu-
ations of the circuit on ciphertexts through the
protocol. We use the verification protocols in-
troduced above so that each player can verify
whether the protocol is computed correctly.

4 Conclusion

We introduced new efficient secure M + 1st price
auction protocols based on the mix-and-match protocol
and the BGN encryption. As a topic of future work, we
will try to compose a secure auction protocol without
using the mix-and-match protocol.
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