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Abstract— The learing with errors(LWE) problem is to distiguish random liner equtations, which
have perturbed by small amount noise, from truly uniform ones. Recently the problem has served
as the foundation of many cryptographic applications. Unfortunately, this is rather inefficient due to
an inherent quadratic overhead in the use of standard LWE. In this paper we construct an identity
based encryption scheme on the ideal learning with errors (Ideal-LWE) problem which is an algebraic
variant of learning with errors (LWE). We make an identy-based encryption of LWE much more efficient
through the use of Ideal-LWE.
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1 Introduction

1.1 Background

Recently, lattices have emerged as a very attractive
foundation for cryptography. The appeal of lattice-
based encryption mechanism stems from the fact that
their strength of security is based on the worst-case
hardness assumptions, and that they appear to remain
secure even against quantum computers. More recently,
Regev [10] defined the learning with errors (LWE) prob-
lem and proved that it enjoys similar worst-case hard-
ness properties, under a quantum reduction. The LWE
problem has proved to be versatile for cryptographic
schemes, serving as the basic for secure public-key en-
cryption under both IND-CCA secure PKE [10] and
identity-based encryption [1, 11], and more. One bot-
tleneck of schemes based on the LWE problem, how-
ever, is that they tend not to be efficient enough for
practical applications. A promising approach for avoid-
ing this inefficiency is to use a lattice that possess an
extra algebraic structure.

Identy-Based Encryption(IBE) provides a public-key
encryption mechanism where a public key is an arbitary
string such as an email address or a telepohone number.
The corresponding private key can only be generated
by a Private Key Generater who has knowledge of a
master secret. Agrawal, Boneh and Boyen constructed
a lattice-based IBE [1]. They showed how to build a se-
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cure IBE in the standard model from the learning with
errors (LWE) problem. Their cryptosysytem have two
trapdoors for finding short vectors. All previous cryp-
tosystems based on general lattices rely on average case
hardness of the Learning With Errors (LWE) problem
introduced in [10]. Our scheme is based on a structured
varient of LWE, that is called Ideal-LWE [2].

1.2 Our Results

In this paper, we introduce an identy-based encryp-
tion on Ideal-LWE. By this change, we can make use of
the trapdoor in [2] instead of the one in [1]. When the
trapdoor in [2] is used, the size of plaintext that can be
encrypted with the same size of key is larged than the
trapdoor in [1].

2 Preliminaries

2.1 Ideal lattices

Ideal lattices are special subset of lattices that pos-
sess the computationally interesting property of being
related to structured matrices and polynomials. The n-
dimensional matrix-matrix and vector-matrix products
then respectively cost Õ(n2) and Õ(n) arithmetic oper-
ations instead of O(n3) and O(n2). Let f ∈ Z [x] be a
monic dgree n polynomial. For any g ∈ Q[x],there is a
pair (q, r) with deg(r) < n and g = qf +r. We denote r

by g mod f and identify r with the vector r ∈ Qn of its
coefficient. We denote rotf (r) ∈ Qn×n as a matrix the
rows for which are xir(x) modf(x)′s, for i ∈ [0,n− 1].
We extend that notation to the matrices A over Q[x]/f :
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by replacing each Ai,j with rotf (Ai,j), and we obtain
rotf (A). Note that rotf (g1)rotf (g2) =rotf (g1g2) for
any g1, g2 ∈ Q[x]/f .

Property 1 (Lemma 2.3 in [2])
Let k ≥ 0 and n = 2k. Then f(x) = xn+1 is irreducible
in Q[x]. Its expansion factor EF(f ,2) ≤ √

2. Also, for
any g =

∑
i<n gi xi ∈ Q[x]/f , we have rotf (g) =

rotf (ḡ) where ḡ = g0 -
∑

1<i≤n gn−i xi. Furthermore,
if q is a prime such that 2n | (q-1), then f(x) has n
degree 1 factors in Zq[x]. Finally, if k ≥2 and q is a
prime with q ≡ 3 mod 8 then f = f1f2mod q where, for
any i ∈ {0, 1}, we have that fi is irreducible in Zq[x]
and can be written fi = x

n
2 + tix

n
4 − 1 with ti ∈ Zq.

2.2 Ideal-LWE

The Learning With Errors problem with parameters
q(・), m(・), and a distribution χ(・) on R/[1,q(・)]
(LWEq,m;χ) is as given hereafter. Given n, matrix G

∈ Zm(n)×n
q(n) sampled uniformly at random and Gs + e

∈ (R/[1, q(n)])n , where s ∈ Zn
q(n) is chosen uniformly

at random and the coordinates of e ∈ (R/[q(n)])m(n)

are independently sampled from χ(n) , find s.
The Ideal Learning With Errors with parameters
q(・), m(・), a distribution χ(・) on R/[1,q(・)] and
f (Ideal − LWEf

q,m;χ) is the same as above, except
that G is of the form G = rotf (g) with g chosen uni-
formly in (Zq[x]/f)m.

Definition 1 For q prime, let R = Z/(xn+1), A ∈ R,
u ∈ R, define:

Λq(R) := {e ∈ R ∃s.t. s ∈ R where AT s = e (mod q)}
Λq

⊥(R) := {e ∈ R s.t. Ae = 0 (mod q)}
Λq

u(R) := {e ∈ R s.t. Ae = u (mod q)}

2.3 Discrete Gaussians

Let L be a subset of ZFm. For any vector c ∈ Rm

and any positive parameter σ ∈ R>0, define:

ρσ,c(x) = exp(-π
‖x− c‖2

σ2
) : A Gaussian-shaped func-

tion on Rm with center c and parameter σ,
ρσ,c(L) =

∑
x∈L ρσ,c(x) : the (always converging) sum

of ρσ,c over L,
DL,σ,c : the discrete Gaussian distribution over L with
parameters σ and c,

∀y ∈ L , DL,σ,c(y) =
ρσ,c(y)
ρσ,c(L)

We abbreviate ρσ,0 and DL,σ,0 as ρσ and DL,σ. We
write ρ to denote ρ1. The distribution DL,σ,c will most
often be defined over the lattice L = Λq

⊥(A) for ring
elements A ∈ Rm or over a coset L = t + Λq

⊥(A)
where t ∈ Zm .

Property 2. The follwing lemma is a substitute for the
ideal-LWE lemma following from [4] and [1] that cap-
tures standard properties of these distributions. The
first two properties follow from Lemma 4.4 of [7] and
Corollary 3.16 of [10] (using Lemma 3.1 from [6] to
bound the smoothing parameter). We state in prop-
erty (2) a stronger version of Regev’s Corollary 3.16
found in [2]. The last properties are algorithms from
[6].

Lemma. Let A be ring element in R = Zq[x]/(xn +1)
with k≥0, n = 2k. Then for c ∈ Rm and u ∈ R, we
have the following.
1. Pr[x ∼ DΛu

q (A),σ : |x| > √
mσ] ≤ negl(n).

2. A set of O(m log m) samples from DΛu
q (A),σ contains

a full rank set in Zm, except with negligible probality.

3. There is a PPT algorithm SamplePre(A, TA, u, σ)
that returns x ∈ Λq

u(A) sampled from a distribution
statically close to DΛu

q (A),σ whatever Λq
u(A) is not

empty.

This SamplePre algorithm is needed to generate mas-
ter key in the proposed encryption system.

Definition2. Consider a real parameter α = α(n) ∈
(0,1) and a prime q. Denote by T = R/Z the group pf
reals [0,1) with adition modulo 1. Denote by Ψα the
distribution over T of a normal variable with mean 0
and standard deviation α/

√
2π then reduced modulo

1. Denote by bxe = bx + 1
2e the nearest integer to the

real x ∈ R. We denote by Ψα the distribution over Zq

of the random variable bqXe modq where the random
varieble X ∈ T has distribution Ψα.

Property 3.(Lemma 19 in [1]) Let e be some vector in
Zm and let y

R← Ψα. Then the quantity |eT y| treated
as an integer in [0,q-1] satisfies

|eT y| ≤ ‖e‖qαω(
√

log m) + ‖e‖
√

m

2
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with all but negligible probability in m.

2.4 The Norm of a Random Matrix

Recall that norm of a matrix R ∈ Rk×m is defined
as ‖R‖ := sup‖u‖=1‖Ru‖. We will need the following
lemma from Litvak et al. [8] to bound the norm of a
random matrix in {−1, 1}m×m. A similar lemma ap-
pears in [9, Lemma 2.2].

Property 4(Lemma 7 in [1]) Let R be an m×m ma-
trix chosen at random from {−1, 1}m×m. Then for all
vectors u ∈ Rm we have

Pr[‖R‖ > C
√

m] < e−m

for some universal constant C (taking C = 16 is suffi-
cient).

2.5 Sampling Algoritms

Let A and B be a ring element in R and let be R

∈ R and R’s coefficients must be a ∈ {-1,1}. The pro-
posed construction makes use of matrices in the form
F = (A | AR + B) ∈ R2m and we need to sample short
ring elements in Λq

u (F) for u in R. More precisely, we
define the following algorithm:

SampleLeft takes a basis for Λq
⊥(A) and outputs

short vector e ∈ Λq
u(F).

2.5.1 Algorithm SampleLeft

Algorithm SampleLeft(A, M1, TA, u, σ):
Inputs:

a ring element A in Rm and a ring element M1 in Rm,

a ”short” basis of Λq
⊥(A) and a ring element u ∈ R,

a gaussion parameter σ > ‖T̃A ‖ · ω(
√

log(2m)).

(1)

Output: Let F1 := (A|M1). The algorithm outputs a
vector e ∈ Rm+m1 sampled from a distribution stati-
cally close to DΛu

q (F1). In paticular, e ∈ Λq
u(F1).

The algorithm appears in Theorem 3.4 in [1] and in the
signing algorithm in [31]. For completeness, we briefly
review the algorithm.

1. Sample random ring element e2 ∈ Rm distributed
statically close to DR,σ. ,
2. Run e

R← SamplePre(A, TA, y, σ) where y = u −
(M·e2) ∈ R.
3. Output e ← (e1,e2) ∈ R2m

We have (A | M1)·e = u mod q and hence e ∈ Λq
u(F1).

Theorem 3.4 in [3] shows that the ring element e is sam-
pled from distribution statistically close to DΛu

q (F1).

Property 5. This property from theorem 14 in [1]. Let
q > 2, m > n and σ > ‖T̃A ‖ · ω(

√
log(2m)). Then

SampleLeft(A,M1, TA, u, σ) taking inputs as in (1),
outputs a vector e ∈ R2m distributed statically close
to DΛu

q (F1), where F1 := (A|M1).

2.6 Trapdoor in Ideal-LWE

The following Theorem can be mainly derived from
[2]. The purpose of this section is to demonstrate how
to create a TrapGen algorithm that generates a mas-
ter key in this encryption system. In Ajtai and Alwen-
Peikert [1], a few uniformly distributed random vectors
(gi)i≤σ are first generated and then are used as the
seed to produce other random vectors (gi)i>σ that are
seemingly uniformly distributed. Using this property,
the following algorithm is generated.

For g1, g2, . . . , gr ∈R, we denote by H(g1, g2, . . . , gr)
random variable

∑
i≤0bigi ∈ R where bi are degree <

n polynomials with coefficients chosen independently
and uniformly in D. Let g be in Rm with R = Zq/f

and a full-rank set S of small linearly independent vec-
tors belonging to lattice G⊥ = rotf (g). For this, it
suffices to find rank m set of R0-linearly independent
short vectors in module M⊥(g) = {a ∈ Rm

0 |〈a ,g 〉 ≡
0 mod q }, with R0 = Z[x]/f .
We first generate some seed elements g1, g2, . . ., gσ

in R. They will be the first elements of Ideal-LWE in-
stantiation. They need sufficient yield so that arbitrary
elements of R can be written up as linear combinations
of them. From the seed, derive some intermediate ring
elements h1, h2, . . ., hm. Among them, there should be
a sufficient number of elements that are uniformly dis-
tributed in R, so that we may use Theorem 3.2 in [3].
The first hi’s have the technical purpose of allowing to
have small relations between g1, g2, . . ., gσ, hσ+1, . . .,
hm. More precisely, we will have:
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[A|B](g1, g2, . . . , gσ, hσ+1, . . . , hm)T = (0, . . . , 0)T (1)

where A ∈ R(m−σ)×σ
0 and B ∈ R(m−σ)×(m−σ)

0 have
small entries. B is lower triangular with 1’s on the di-
agonal.
Since the last r of polynomials hm−r−1, . . . , hm are uni-
formly distributed in R, we take them as the last gi’s,
and we construct the missing gi’s by:

gi =

{
hi + H(hm−r+1, . . . , hm), i ∈ [σ + 1,m− r],
hi, i ∈ [m− r + 1,m]

(2)

Thanks to Theorem 3.2 in [2], we see that whenever
were the first hi’s, the uniformly of last ones provides a
close to uniform distribution of (g1, . . . , gm). We have
that, for all i ∈ [σ+1, m− r],
gi = hi +

∑m
j=m−r+1 yi,jhj , where each yi,j is a degree

< n polynomial with coefficients chosen independently
and uniformly in D. We define C ∈ Rm−σ×m−σ

0 as
follows:

C =

[
Idm−σ−r (yi,j)

0 Idr

]

Equation (2) implies that

C · (hσ+1, · · · , hm)T = (gσ, · · · , gm)T and [A|B · C] ·
(g1, · · · , gm)T = (0, · · · , 0)T .

Then we define:
hm−r−σ+i = 2−1gi for i ≤ σ, where the inverse is taken
as modulo q.
This give us σ additional relations, since (for i ≤ σ):

2gm−r−σ+i = 2hm−r−σ+i + 2H(hm−r+1, · · · , hm)

= gi + 2H(gm−r+1, · · · , gm)mod q (3)

Let 2gm−r−σ+i = gi + 2
∑m

j=m−r+1 zi,jgj over Z, where
each zi,j is a degree < n polynomial which has coeffi-
cients chosen uniformly and independently from D. We

define σ × (m− σ) matrix K:

K = [0| − 2Idσ|2(zi,j)].

From Equation(3), we have that [Idσ|K]·(g1, · · · , gm)T ≡
(0, · · · , 0)T mod q. As a result, we obtain uniformly dis-
tributed gi’s and relations of the type (over R):

[
A B · C

Idσ K

]



g1

...
gm


 =




0
...
0




where A and B are those of Equation(1), C ∈ R
(m−σ)×(m−σ)
0

is upper triangular with 1′s on its diagonal, and K ∈
R

σ×(m−σ)
0 is divisible by 2. All these matrices have

small entries.
Next, we show a construction method for A and B. We
start by generating hm−r+1, . . . , hm uniformly and in-
dependently in R. Additionally, we set hm−r−σ+i =
2−1gi for i ≤ σ. For any i ∈ [m − r − σ + 1,m], we
write hi as a linear combination over R of the seeds:
hi =

∑
j≤σ xi,jgj . We use the binary decompositions of

these polynomials to write: hi =
∑κ−1

k=0

∑
j≤σ xi,j,kgj2k,with

κ = dlog qe. The xi,j,k’s are polynomials with {0, 1}-
coefficients.
We use the xi,j,k’s in A. The latter starts with k + σ

blocks of Rκ×σ
0 . The ith blocks is made of the xi,j,k’s(forj ≤

s and 0 ≤ k ≤ κ− 1) by decreasing the value of k.
Matrix B is as follows

B =




T

. . .

T

E Id




,

where there are r+σ blocks T and E[i, j] = -1 if i = jκ

and 0 otherwise.

3 Encoding Identities as Ring Elements

The proposed construction uses encoding function
H: =R → Rm to map identities in R.

Now, for input u = a0 + a1X + . . .+ an−1 Xn−1 ∈ R

define the polynomial gu(X) =
∑n−1

i=0 ui Xi ∈ R[X].
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Define H(u) as

H =




g(X)
X・g(X) mod f

X2 · g(X) mod f
...

Xm−1 mod f




This completes the construction. Since for all primes q

and integers n > 1 there are irreducible polynomials in
Zq[X] of degree n, the construction can accommodate
any pair of q and n.

4 Construction of IBE Based on Ideal-

LWE

Setup(λ): On input a security parameter λ, set pa-
rameters q,n,m,σ,α as specified in the section below.
Procedure:

1. Select a uniformly random ring element g ∈ Rm.

2. Use algorithm TrapGen(g, m) to generate TA ∈
Rm×m such that ‖TA‖ ≤

√
σn + 9(m− σ).

3. Select two unifomly random vectors A1,B in Rm

4. Select a uniformly random ring element u R← R

5. Output the public parameters and master key,

PP = ( A0,A1,B0,u ) ; MK = (TA0) ∈ Rm×m

Extract(PP , MK , id): On input public parameters
PP, a master key MK , and an identity id ∈ Rm, do:

1. Sample e ∈ R2m as e ← SampleLeft(A0, A1 +
H(id), TA0 , u, σ) where H is a map as defined in Sec-
tion 3. Note that A0 is rank n w.h.p as explained in
Section 4.1.

2. Output SKid := e ∈ R2m

Let Fid := (A0 | A1 + H(id)B), then Fid = u in R and
e is distributed as by Property 3.

Encrypt(PP, id, bi): On input public parameters PP ,
an identity id, and message bi (i = 1, . . . , m) ∈ {0, 1}m

∈ D, do:

1. Set Fid ← (A0 | A1 + H(id)· B) ∈ R2m

2. Choose a uniformly random s
R← R

3.Choose a uniformly random m×m Y R← {0, 1}m×m

4. Choose noise vector x’s each coefficient Ψα
m

← Rmand
y‘s each coefficient Ψα

m

← R, and set z ← RT y ∈ Rm (the
distribution is as in Definition 2),

5. Set c0 ← uT s +x + bi Xi b q
2c ∈ R

c1 ← FT
id・s +

[
y

z

]
∈ R2m

6. Output the cipertext CT := (c0,c1) ∈ Rm×R2m.

Decrypt(PP , SKid , CT ): On input parameters PP

, a private key SKid := eid, and a ciphertext CT = (c0

, c1) , do:

1. Compute w ← c0 - eT
idc1 ∈ R.

2. Compute Xi’s coefficient of w and b q
2c treating them

as integers in R.

4.1 Correctness

When the cryptosystem is operated as specified, we
have,

w = c0 − eT
idc1 = biX

ibq
2
c+ x− eT

id

[
y

z

]

︸ ︷︷ ︸
error term

The norm for the error term is bounded by w.h.p.

Proof. Letting eid = (e1|e2) with e1, e2 ∈ R2 the error
term is

x− eT
1 y− eT

2 z = x− eT
1 y− eT

2 RT y = x− (e1 − Y e2)T y

By Property 2, we have ‖eid‖ ≤ σ
√

2m w.h.p.
Hence, by Property 4, we have ‖e1 − Y e2‖ ≤ ‖e1‖ +
‖Y e2‖ ≤ O(σm).
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Then, by Property 3 the error term is bounded by

|x− eT
id

[
y

z

]
|
i

≤ |x|i + |(e1 − Y e2)T y|i ≤

{qαmω(
√

logm) + O(σm
3
2 )}i

as required.
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