
Copyright c⃝The Institute of Electronics,
Information and Communication Engineers

SCIS 2012 The 29th Symposium on
Cryptography and Information Security
Kanazawa, Japan, Jan. 30 - Feb. 2, 2012

The Institute of Electronics,
Information and Communication Engineers

The Distributed Decryption Schemes
for Somewhat Homomorphic Encryption

Ryo Hiromasa ∗ Yoshifumi Manabe † Tatsuaki Okamoto ‡

Abstract— We propose distributed decryption schemes for somewhat homomorphic encryption
(SHE). The proposed schemes are constructed based on the encryption scheme by Brakerski and Vai-
kuntanathan. In SHE, homomorphic multiplication increases the number of elements in a ciphertext.
The proposed scheme can decrypt a ciphertext containing more than two elements with k out of N
parties. The distributed decryption scheme introduced by Damgard, Pastro, Smart and Zakarias needs
a trusted third party for decrypting a ciphertext that has more than two elements with N out of N
parties. We present a distributed decryption scheme in which the parties can decrypt ciphertexts of
any size without a trusted third party. In addition, we evaluate the errors of the proposed schemes.

Keywords: Somewhat Homomorphic Encryption, Distributed Decryption, Ring Learning with Er-
rors

1 Introduction

Fully Homomorphic Encryption (FHE) allows us to
compute arbitrary operations homomorphically. In the
last two years, several FHE schemes have been propo-
sed and improved [2–4,7,8,13,14], but they are not yet
practical. These FHE schemes are constructed from
somewhat homomorphic encryption (SHE) schemes by
installing error management techniques (e.g., boots-
trapping and squashing). SHE schemes can also add
and multiple ciphertexts homomorphically. In SHE
schemes, the number of the homomorphic multiplica-
tions is limited, because it increases more error than
homomorphic additions. Therefore, SHE schemes can
evaluate only a limited number of circuits, but they
are more efficient than FHE schemes. Since practical
applications need not to compute arbitrary operations,
SHE scheme is useful in practical applications.

Many FHE schemes are based on the learning with
errors (LWE) assumption. In several earlier works that
relate to the distributed decryption based on the LWE
assumption, schemes based on the standard LWE [1]
and the ring LWE [5] were proposed. In [1], which is
based on the standard LWE, a scheme was constructed
from a variant of the cryptosystem described in [11]. In
this scheme, if equal to or more than k out of N parties
cooperate to decrypt, the decryption succeeds. Howe-
ver, if the amount of the cooperating parties is equal to
or less than k−1, the decryption fails. In [5], a scheme
is constructed by extending SHE [3] based on the ring
LWE. This scheme allows the parties to decrypt cip-
hertexts by cooperating with N out of N parties. The

∗ Department of Social Informatics, Graduate School of Infor-
matics, Kyoto University.

† NTT Communication Science Laboratories
‡ NTT Information Sharing Platform Laboratories

ciphertexts often have more than two elements in the
homomorphic encryption, because homomorphic mul-
tiplication increases the number of elements in the cip-
hertexts. In the encryption scheme [3], decrypting cip-
hertexts requires the powers of the secret key. When
every party chooses a share of the secret key and con-
struct a secret key from the share, it is not easy to
construct the powers of the secret key from the parties
share. Therefore, the scheme in [5] requires a trus-
ted third party to decrypt the ciphertext that contains
more than two elements.

1.1 Our Results

We construct a distributed decryption scheme for so-
mewhat homomorphic encryption described in [3]. In
this scheme, any party group whose size is equal to
or more than k can decrypt ciphertexts. Our (k,N)
scheme requires a trusted third party to decrypt the
ciphertext containing more than two elements, so we
also construct improved schemes. Using the proposed
improvements, parties can decrypt a ciphertext of any
size without a trusted third party. In addition, we eva-
luate the size of the errors generated when the parties
decrypt using the proposed schemes.
In this paper, we introduce the SHE scheme based

on the ring LWE that is used in our schemes. Next, we
propose distributed decryption schemes for SHE that
allow the parties to decrypt the ciphertext of any size
without a trusted third party. Finally, we describe the
evaluation of the size of the errors generated in the
proposed schemes.

2 Somewhat Homomorphic Encryption

In this section, we show the encryption scheme used
in the proposed schemes and a mathematical assump-

1

tion used in the encryption scheme as a security basis.
To construct distributed decryption schemes, we use
SHE based on the ring LWE assumption, which is des-
cribed by Brakerski and Vaikuntanathan [3].

2.1 Ring LWE

Ring LWE(RLWE) is an assumption parameterized
by a degree n integer polynomial f(x) ∈ Z[X] and a
prime integer q ∈ Z.

We consider the ring R = Z[X]/⟨f(x)⟩ and Rq =
R/qR = Zq[X]/⟨f(x)⟩ (⟨f(x)⟩ is the group generated
by f(x)). In this SHE scheme, we set f(x) = xn + 1
where n is a power of 2. Each element over the ring
is a degree n − 1 polynomial and can be viewed as a
vector of degree n, namely, when we let a ∈ R, a is
denoted as (a0, a1, ..., an−1), where ai is an element of
Z and a coefficient of the polynomial. Addition over the
ring is done by adding two such vectors component-wise
modulo q. Multiplication is polynomial multiplication
modulo f(x). For element a = (a0, a1, ..., an−1) ∈ R,
we let |a| = ||a||∞ = max |ai| be the size of the element

of R. Here, let a
U←− R denote that a is selected from

R at uniformly random. In addition, when we let χ be

the discrete gaussian distribution over R, let a
R←− χ

denote that we choose a along the distribution.
The RLWE assumption is defined as follows.

Definition. 2.1 (Ring LWE Assumption)
Let χ be a discrete gaussian distribution over R. For

ai, s
U←− Rq and ei

R←− χ, given any polynomial number
of samples (ai, bi = ais + ei), bi are computationally
indistinguishable from the elements chosen from Rq at
uniformly random.

This assumption is equal to the variant where s
R←− χ.

In addition, Theorem 2.2 holds by setting modulus po-
lynomial f(x) to be cyclotomic polynomial xn +1. We
set the error distribution to be the discrete gaussian
distribution Dσ,Z over R where σ is the standard devi-
ation. According to this setting, Theorem 2.1 holds.

We evaluate the error of the proposed schemes from
the following two theorems.

Theorem. 2.1 (see [10])
Let n ∈ N. For any real number σ > ω(

√
logn)，it

holds that

Pr
x

R←−χ
[||x||∞ > σ

√
n] ≤ 2−n+1.

Theorem. 2.2 (see [7])
Let n ∈ N, f(x) = xn + 1，and R = Z[X]/⟨f(x)⟩．For
any s, t ∈ R, it holds that

||st||∞ < n · ||s||∞||t||∞.

2.2 Somewhat Homomorphic Encryption

Here, we describe the SHE scheme used in the pro-
posed schemes. The SHE scheme is based on RLWE
and uses the following parameters．

n: n is the degree of the modulus polynomial. n
is power of 2．

q: q is a prime integer, where q ≡ 1 mod 2n．

f(x): We set the modulus polynomial such that
f(x) = xn + 1.

R,Rq: Let R = Z[X]/⟨f(x)⟩ and let
Rq = Zq[X]/⟨f(x)⟩．

t: Let t(< q) be a prime integer. It defines the
message space．

Rt: Let Rt = Zt[X]/⟨f(x)⟩ be the message space．

χ: Let χ be the discrete gaussian distribution
over R．

The SHE scheme consists of five algorithms SHE.{KeyGen,
Enc, Dec, Add, Mult}．

SHE.KeyGen(1k): This algorithm takes security
parameter 1k as an input and outputs public key

pk and secret key sk．Choose a1
U←− Rq and

s, e
R←− χ, then sk = s and compute pk = (a0 =

−(a1s+ te), a1)．

SHE.Enc(pk,m): Choose u, f, g
R←− χ. Let m ∈

Rt be a message. We compute a ciphertext c as
follows．

c = (c0, c1) = (a0u+ tf +m, a1u+ tg).

SHE.Dec(sk, c): Let c = (c0, c1, ..., cδ) be a cip-
hertext. We compute

d =
δ∑

i=0

cis
i mod q.

We can obtain plaintext m by computing m = d
mod t.

SHE.Add(c, c′): Let c = (c0, c1, ..., cλ) and c′ =
(c′0, c

′
1, ..., c

′
δ)be two ciphertexts. Homomorphic

addition is performed by adding these ciphertexts
component wise. If λ ̸= δ, then the shorter cip-
hertext is padded with zeros. The algorithm SHE.Add
outputs (c0 + c′0, c1 + c′1, ..., cmax(λ,δ) + c′max(λ,δ))
as a result.

SHE.Mult(c, c′): Let c = (c0, c1, ..., cλ) and c′ =
(c′0, c

′
1, ..., c

′
δ) be two ciphertexts. Here, we do not

pad the shorter ciphertext. Let vi be a symbolic
variable, and we consider

λ∑
i=0

civ
i

δ∑
i=0

c′iv
i =

λ+δ∑
i=0

c′′i v
i

If we replace vi with si, we find that this implies
that the results of the decryption are multiplied.
The algorithm SHE.Mult outputs (c′′0 , c

′′
1 , ..., c

′′
λ+δ)

as a result of homomorphic multiplication.

2

3 Distributed Decryption Schemes

In this section, we describe the (N , N) distributed
decryption scheme and (k, N) distributed decryption
scheme. The proposed distributed decryption schemes
use the same parameters as the SHE scheme.

In the distributed decryption schemes, the Setup al-
gorithm and Encryption algorithm are changed from
the ones in the SHE scheme. Instead of the decryp-
tion algorithm in the SHE scheme, the parties coope-
rate to decrypt the ciphertext in a Distributed Decryp-
tion phase. Homomorphic addition and multiplication
are performed using the same algorithm as in the SHE
scheme. The Setup phase is the phase used to gene-
rate a public key and the shares of a secret key. In
the Encryption phase, we encrypt a message by using
the public key generated in the Setup phase. In the
Distributed Decryption phase, the parties cooperate to
decrypt a ciphertext.

3.1 (N , N) Distributed Decryption Scheme

In (N , N) schemes, the parties can decrypt a cipher-
text only if all the N parties cooperate. The scheme by
Damgard, et al. [5] shown below does not allow the par-
ties to decrypt ciphertexts containing more than two
elements.

Here, we describe the (N , N) distributed decryption
scheme. This scheme was proposed by Damgard, et
al. [5].

Setup：Choose a1
U←− Rq. Each party Pi(i =

1, ..., N) chooses si, ei
R←− χ and computes distri-

buted public key pki = (a0,i = −(a1si + tei), a1)
where si is a share of the secret key. The par-
ties compute public key pk as follows from pki
revealed by each Pi.

pk = (a0, a1)

= (
N∑
i=1

a0,1, a1)

= (−(a1
N∑
i=1

si + t
N∑
i=1

ei))

= (−(a1s+ te), a1),

where s =
∑N

i=1 si, e =
∑N

i=1 ei.

Encryption：Let m ∈ Rt be a message, and we
compute ciphertext c as follows.

c = SHE.Enc(pk,m)

Distributed Decryption：

1. Party Pi(i = 1, ..., N) performs the following
procedure in turns．

(i) Pi computes di = (di,0, di,1) = (c0, c1si).

(ii) Pi chooses ri
R←− χ.

if i = 1 then D = di,0 + di,1 + tri

else D = D + di,1 + tri
(iii) if i ̸= N then Pi sends D to Pi+1.

2. Parties can obtain the plaintext by compu-
ting as follows.

(D mod q) mod t

3.2 (k, N) Distributed Decryption Scheme

In the (k, N) scheme，the parties recover the secret
key by using lagrange interpolation at the Distributed
Decryption phase. This secret sharing method is des-
cribed by Shamir [12]. To recover the secret key, each
party Pi generates a degree k−1 polynomial fi(x) such
that

si = fi(0) =
N∑
j=1

fi(j)lj(0),

where

lj(x) =

∏j−1
θ=1(x− θ) ·

∏N
θ=j+1(x− θ)∏j−1

θ=1(j − θ) ·
∏N

θ=j+1(j − θ)

and si is a share of the secret key.
We describe the (k, N) distributed decryption scheme.

Setup：Choose a1
U←− Rq. Each party Pi(i =

1, ..., N) chooses si, ei
R←− χ and computes public

key pki = (a0,i = −(a1si + tei), a1). In addition，
Pi generates a polynomial over Rq of degree k−1
that has si as the constant term.

fi(x) = si + a1x+ a2x
2 + · · ·+ ak−1x

k−1,

where a1, ..., ak−1 ∈ Rq and si is a share of the
secret key. Pi sends fi(l) to Pl(l = 1, ..., N). In
addition, the parties compute public key pk in the
same way in the (N , N) Distributed Decryption
scheme.

Encryption：We compute a ciphertext in the
same way as the Encryption phase of the (N , N)
Distributed Decryption scheme．

Distributed Decryption：Let c = (c0, c1) be
the ciphertext. Equal to or more than k out of
N parties cooperate in the decryption. Let S =
{ι1, ..., ιh} (h ≥ k) be the set of the indexes of
the cooperating parties.

1. Every Pιi(i = 1, ..., h) performs the follo-
wing procedure in turns．

(i) Let ρi = li(0)
∑N

j=1 fj(ιi) and every Pιi

computes di = (di,0, di,1) = (c0, c1ρi).

(ii) Pιi chooses ri
R←− χ.

if i = 1 then D = di,0 + di,1 + tri
else D = D + di,1 + tri

(iii) if i ̸= h then Pιi sends D to Pιi+1 .

2. The parties can obtain the plaintext by com-
puting as follows.

(D mod q) mod t

3

3.3 Distributed Decryption for Ciphertext of
Any Size

The above schemes can be used for ciphertexts that
have less than three elements. However, the number of
elements of a ciphertext increases by computing homo-
morphic multiplication, so we need a scheme in which
the parties can decrypt such a ciphertext to allow us
to compute homomorphic multiplication.

Let = (c0, c1, ..., cδ) be the ciphertext. The Distri-
buted Decryption phase for the ciphertext containing
more than two elements proceeds as follows.

Distributed Decryption:

1. d = (d0, d1, ..., dδ) = (c0, c1, c2, ..., cδ)

2. j = 1, and perform the following procedure
to j = δ．

(i) Every party Pi computes d′
i as follows.

if i = 1 then

d′
i = (d0, d1, ..., dj−1, djsi, dj+1si, ..., dδsi)

else

d′
i = (0, 0, ..., 0︸ ︷︷ ︸

j

, djsi, dj+1si, ..., dδsi)

(ii) Every party Pi performs computations
as follows in turns.

i. Pi chooses ri,1, ..., ri,δ+1−j
R←− χ, ge-

nerates a vector

r = (0, 0, ..., 0︸ ︷︷ ︸
j

, ri,1, ri,2, ..., ri,δ+1−j),

and computes

if i = 1 then d = d′
i + tr

else d = d+ d′
i + tr.

ii. if i ̸= N then Pi sends d to Pi+1.

(iii) j = j + 1

3. The parties can obtain the plaintext by com-
puting as follows.

(

δ∑
i=0

di mod q) mod t

In addition, we show the improvement of the Dis-
tributed Decryption phase in the (k,N) scheme. This
improved phase is almost the same as that in the (N ,N)
scheme.

Distributed Decryption: Equal to or more
than k out of N parties cooperate in the decryp-
tion. Let S = {ι1, ..., ιh} (h ≥ k) be the set of
indexes of the cooperating parties.

1. d = (d0, d1, ..., dδ) = (c0, c1, c2, ..., cδ)

2. j = 1, and perform the following procedure
to j = δ．

(i) Let ρi = lιi(0)
∑N

θ=1 fθ(ιi), every party
Pιi computes

if i = 1 then

d′
i = (d0, d1, ..., dj−1, djρi, dj+1ρi, ..., dδρi)

else

d′
i = (0, 0, ..., 0︸ ︷︷ ︸

j

, djρi, dj+1ρi, ..., dδρi)

(ii) Every party Pιi performs computations
as follows in turns.

i. Pιi chooses ri,1, ..., ri,δ+1−j
R←− χ,

generates a vector

r = (0, 0, ..., 0︸ ︷︷ ︸
j

, ri,1, ri,2, ..., ri,δ+1−j),

and computes

if i = 1 then d = d′
i + tr

else d = d+ d′
i + tr.

ii. if i ̸= h then Pιi sends d to Pιi+1 .

(iii) j = j + 1

3. The parties can obtain the plaintext by com-
puting as follows.

(

δ∑
i=0

di mod q) mod t

4 Evaluation of Errors

In this section, we describe the evaluation of the er-
rors of the proposed schemes. The error consists of the
sum of the errors of a ciphertext and the errors genera-
ted when the parties cooperate to decrypt a ciphertext
in the distributed decryption schemes. The parameters
of the proposed schemes depend on the size of the er-
ror. Thus, we must evaluate the size of the errors in the
ciphertext to which some homomorphic computations
are done.
First we evaluate the error for decrypting a fresh

ciphertext, and then we evaluate the error generated
when the parties decrypt the ciphertext computed D
multiplications followed by A additions.

4.1 Error for Decrypting Fresh Ciphertext

When the parties decrypt a fresh ciphertext, the er-
ror term te′ + t

∑
i ri is generated. This is because

SHE.Dec(sk, c) = c0 + c1s = te′ + t
∑

i ri + m, where
e′ = (−eu+fs+g) in the above SHE scheme. Here, te′

is the error of the ciphertext and t
∑

i ri is the error ge-
nerated when the parties decrypt the ciphertext. Term
e, u, f, s, and g are drawn from discrete gaussian distri-
bution χ. According to Theorem 2.1, the size of g is at
most σ

√
n. From Theorem 2.2, eu and fs have size at

mostN ·n·(σ
√
n)2 = Nσ2n2, because eu and fs are po-

lynomial multiplications. According to this estimation,
we find that the size of te′ is at most t(2Nσ2n2+σ

√
n)．

4

Next, we evaluate the errors generated in the distribu-
ted decryption phase in the proposed schemes. In the
(N , N) distributed decryption scheme, all the N par-
ties cooperate in decryption. When a party passes to
the next party the ciphertext to which its share of the
secret key is multiplied, the party adds the error tri to
the ciphertext, where ri is chosen from χ. This proce-
dure generates error t

∑
i ri, which is at most tNσ

√
n.

In the (k, N) distributed decryption scheme, equal to
or more than k out of N parties might cooperate in the
decryption, so t

∑
i ri has magnitude at most tNσ

√
n.

Therefore, the error of the (k, N) scheme is as large
as that for the (N , N) scheme. Based on the above
estimation, the size of the errors generated when the
parties perform decryption in the (N ,N) and (k,N)
schemes is at most t(2Nσ2n2 + (N + 1)σ

√
n).

Decryption succeeds if |te′| < q/2, so we must choose
q such that

2t{2Nσ2n2 + (N + 1)σ
√
n} < q

In the proposed improved schemes, if the ciphertext
size is δ + 1, the parties multiply their shares and add
error to the ciphertext in δ rounds. For a fresh cipher-
text, the multiplication and the addition in the distri-
buted decryption phase is performed in one round. The
addition in one round generates error that is at most
tNσ
√
n, which is as large as that in the (N ,N) and

(k,N) schemes. Therefore, after computing the distri-
buted decryption phase in the improved schemes, the
size of the error of the fresh ciphertext is increased to
at most t{2Nσ2n2 + (N + 1)σ

√
n}. Consequently, the

size of the error in the improved schemes is as large
as those in (N ,N) schemes and the (k,N) schemes, so
in the improved schemes we have only to choose q that
has the same size as q of the (N,N) schemes to decrypt
the fresh ciphertext.

4.2 Error for Decrypting Ciphertext Compu-
ted D Multiplications Followed by A Ad-
ditions

Let η be the error of a fresh ciphertext. One mul-
tiplication increases the error from η to n · η2，so the
size of the error after computing D multiplications is
at most nD · ηD+1. Then with A additions, the error
increases to A · nD · ηD+1. Let ηfinal be the error of
the ciphertext computed D multiplications followed by
A additions. In the schemes for ciphertexts that have
less than three elements, The size of the error of a fresh
ciphertext is at most t{2Nσ2n2 + (N + 1)σ

√
n}. The-

refore, the size of ηfinal is

ηfinal ≤ A · nD · tD+1(2Nσ2n2 + (N + 1)σ
√
n)D+1.

After computing the distributed decryption phase in
the improved schemes, the error that has magnitude
at most tNσ

√
n · |

∑n−1
i=0 si| is added to each element

cn in the ciphertext. Overall, the distributed decryp-
tion phase in the improved schemes add the error at
most tNσ

√
n · |

∑δ
i=1

∑i−1
j=0 s

j | to error ηfinal. Hence,

we have only to evaluate the size of
∑δ

i=1

∑i−1
j=0 s

j .

From Theorem 2.2, |sj | = nj−1|s|j . Thus, the size of∑δ
i=1

∑i−1
j=0 s

j is at most∣∣∣∣∣∣
δ∑

i=1

i−1∑
j=0

sj

∣∣∣∣∣∣ =
δ∑

i=1

(1 +
i−1∑
j=1

|sj |)

= δ +
δ∑

i=1

i−1∑
j=1

nj−1|s|j

= δ +

δ∑
i=1

|s| − ni−1|s|i

1− n|s|

≤ δ +

δ∑
i=1

ni−1|s|i

= δ +
|s| − nδ|s|δ+1

1− n|s|
≤ δ + nδ|s|δ+1.

Here, s is the sum of si, so from Theorem 2.1, the size
of s is at most Nσ

√
n. Consequently, the error added

at the distributed decryption phase in the improved
schemes has size that is at most

tNσ
√
n ·

∣∣∣∣∣∣
δ∑

i=1

i−1∑
j=0

sj

∣∣∣∣∣∣
< tNσ

√
n · {nδ(Nσ

√
n)δ+1 + δ}.

After D multiplications, the number of the elements in
the ciphertext is D+2, so δ = D+1. Hence, the size of
the final error generated when the parties decrypt the
ciphertext in the improved schemes is at most

ηfinal + tNσ
√
n ·

∣∣∣∣∣∣
δ∑

i=1

i−1∑
j=0

sj

∣∣∣∣∣∣
< A · nD · tD+1(2Nσ2n2 + (δN + 1)σ

√
n)D+1

+tNσ
√
n · {nD+1(Nσ

√
n)D+2 +D + 1}.

For successful decryption of a ciphertext of any size,
we must choose q that is at most

q > 2(ηfinal + tNσ
√
n ·

∣∣∣∣∣∣
δ∑

i=1

i−1∑
j=0

sj

∣∣∣∣∣∣)
> 2A · nD · tD+1(2Nσ2n2 + (δN + 1)σ

√
n)D+1

+2tNσ
√
n · {nD+1(Nσ

√
n)D+2 +D + 1}.

5 Conclusion

We constructed distributed decryption schemes for
somewhat homomorphic encryption. Our schemes al-
low equal to or more than k out of N parties to decrypt
ciphertexts of any size without a trusted third party. In
addition, we evaluated the errors generated when the
parties cooperate to decrypt ciphertexts in the propo-
sed schemes.

5

References

[1] Rikke Bendlin and Ivan Damgard. Threshold de-
cryption and zero-knowledge proofs for lattice-
based cryptosystems. Theory of Cryptography -
TCC 2010, LNCS, 5978:201–218, 2010.

[2] Zvika Brakerski and Vinod Vaikuntanathan. Ef-
ficient fully homomorphic encryption from (stan-
dard) lwe. Cryptology ePrint Archive, 2011. Re-
port 2011/344.

[3] Zvika Brakerski and Vinod Vaikuntanathan. Fully
homomorphic encryption from ring-lwe and se-
curity for key depedent message. Advances in
Cryptology - CRYPTO 2011, LNCS, 6841:505–
524, 2011.

[4] Jean-Sebastien Coron, Avradip Mandal, David
Naccache, and Mehdi Tibouchi. Fully homomor-
phic encryption over the integers with shorter
public-keys. Advances in Cryptology - CRYPTO
2011, LNCS, 6841:487–504, 2011.

[5] Ivan Damgard, Valerio Pastro, Nigel P. Smart,
and Sarah Zakarias. Multiparty computation from
somewhat homomorphic encryption. Cryptology
ePrint Archive, 2011. Report 2011/535.

[6] Yvo Desmedt and Yair Frankel. Threshold cryp-
tosystems. Advances in Cryptology - CRYPTO
’89, LNCS, 435:307–315, 1990.

[7] Craig Gentry. Fully homomorphic encryption
using ideal lattices. STOC, pages 169–178, 2009.

[8] Craig Gentry. Fully homomorphic encryption wit-
hout bootstrapping. Cryptology ePrint Archive,
2011. Report 2011/277.

[9] Kristin Lauter, Michael Naehrig, and Vinod Vai-
kuntanathan. Can homomorphic encryption be
practical? Cryptology ePrint Archive, 2011. Re-
port 2011/405.

[10] Daniele Micciancio and Oded Regev. Worst-case
to average-case reduction based on gaussian mea-
sures. SIAM J.Comput, 37(1):267–302, 2007.

[11] Oded Regev. On lattice, learning with errors,
random linear codes, and cryptography. STOC,
pages 84–93, 2005.

[12] Adi Shamir. How to share a secret. Communica-
tions of the ACM, 22(11):612–613, 1979.

[13] Nigel P. Smart and Frederik Vercauteren. Fully
homomorphic encryption with relatively small key
and ciphertext sizes. Public Key Cryptography -
PKC 2010, LNCS, 6056:420–443, 2010.

[14] Marten van Dijk, Craig Gentry, Shai Halevi, and
Vinod Vaikuntanathan. Fully homomorphic en-
cryption over the integer. Advances in Cryptology
- EUROCRYPT 2010, LNCS, 6110:24–43, 2010.

6

