
Copyright c©The Institute of Electronics,
Information and Communication Engineers

SCIS 2012 The 29th Symposium on
Cryptography and Information Security
Kanazawa, Japan, Jan. 30 - Feb. 2, 2012

The Institute of Electronics,
Information and Communication Engineers

Constant-Round Concurrent Zero-Knowledge
in Super-Polynomial Simulation Security

Susumu Kiyoshima ∗ Yoshifumi Manabe † Tatsuaki Okamoto ‡

Abstract— In this paper, we construct a constant-round concurrent zero-knowledge protocol that is
secure under a relaxed notion of security called Super-Polynomial Simulation (SPS) security. Here, we
do not use any setup assumptions such as common reference strings. The SPS security, introduced by
Prabhakaran and Sahai (STOC ’04), is identical to Universally Composable (UC) security except that
the ideal-world adversary (a.k.a. simulator) is allowed to run in super-polynomial time. The security
of our construction is proven under a standard assumption, the DDH assumption. In addition, our
construction is practical since it does not use any inefficient primitives such as general but expensive
constructions of zero-knowledge protocols for all NP statements. To the best of our knowledge, our
construction is the first SPS-secure constant-round concurrent zero-knowledge protocol that enjoys
both of these properties simultaneously.

A key element of our construction is a concurrently secure commitment scheme with the SPS
security. Our construction is obtained by plugging this commitment scheme into the results of Canetti
and Fischlin (CRYPTO ’01).

Keywords: zero-knowledge, commitment scheme, concurrent security, super-polynomial simulation

1 Introduction

With zero-knowledge proofs, the prover can prove the
validity of a statement to the verifier without providing
any additional knowledge. In other words, the verifier
learns nothing other than the validity of the statement.
This property is formalized in a simulation paradigm.
An interactive proof is said to be zero-knowledge if for
any verifier V ∗ that interacts with the prover, there
exists a simulator S that does not interact with the
prover such that the output of S is indistinguishable
from the output of V ∗. This means that, if the verifier
V ∗ learns something after interacting with the prover,
the simulator S also learns it even without interacting
with the prover. Since the notion was introduced in
[GMR89], zero-knowledge proofs have been extensively
studied. For example, Goldreich and Kahan [GK96]
constructed a constant-round zero-knowledge proof for
any NP statement.

Concurrent Zero-Knowledge. In the original set-
ting of zero-knowledge proofs, only one instance of the
protocol is executed at a time. A more realistic setting
is one where many instances of the protocol are exe-
cuted concurrently with an arbitrary schedule. Con-
current zero-knowledge proofs [DNS98] consider the se-
curity in this setting. Unfortunately, concurrent zero-
knowledge proofs are significantly harder to construct
than the standard zero-knowledge proofs. In fact,
Canetti et al. [CKPR01] showed that, if no trusted

∗ Graduate School of Informatics, Kyoto University
† NTT Communication Science Laboratories
‡ NTT Information Sharing Platform Laboratories

setup is assumed, there exists no constant-round con-
current zero-knowledge proofs for non-trivial languages
with so called “black-box” simulators.

UC Security. In order to consider concurrent secu-
rity of arbitrary protocols, Canetti [Can01] proposed
a framework called Universally Composable (UC) se-
curity. The advantage of the UC security is the UC
theorem. This theorem guarantees that, if a protocol
is secure in the UC framework, it remains secure even
when it is executed concurrently with other protocols
in an arbitrary manner.
The security in the UC framework is formalized in

the simulation paradigm. In order to define the secu-
rity of a protocol, we define a real world and an ideal
world. In the real world, the parties carry out some
task by communicating with each other and executing
the protocol. In the ideal world, the parties do not
communicate with each other. Instead, they give in-
puts to an incorruptible trusted party called an ideal
functionality. The ideal functionality carries out the
task securely and gives the parties the desired outputs.
Roughly speaking, the protocol is secure if for any ad-
versary who can perform some attacks in the real world
there exists an adversary who can perform essentially
the same attacks in the ideal world. In slightly more
detail, we consider an additional entity called the en-
vironment, which oversees either the real world or the
ideal world. Then, a protocol is said to be secure (or
securely realize the ideal functionality) if for any real-
world adversaryA there exists an ideal-world adversary
(a.k.a. simulator) S such that any environment Z can-
not distinguish whether it runs in the real world or it

1

runs in the ideal world.
Unfortunately, it was known that many useful two-

party functionalities (including the zero-knowledge func-
tionality) cannot be securely realized with UC security
in the plain model, where no setup assumption is as-
sumed other than authenticated communication chan-
nels [CF01, CKL03].

Super-Polynomial Simulation. In order to address
the above negative results, a relaxed notion of security
called Super-Polynomial Simulation (SPS) security was
proposed [Pas03, PS04]. In the SPS security, the simu-
lator is allowed to run in super-polynomial time. Thus,
the SPS security guarantees that, if the adversary can
perform some attacks, the simulator can perform essen-
tially the same attacks in super-polynomial time. Al-
though the SPS security is weaker than the standard
simulation-based security, the SPS security guarantees
sufficient security in many applications. For example,
in the case of the UC security, the SPS security is suf-
ficient for many ideal functionalities such as commit-
ment, since these functionalities are secure even against
computationally unbounded adversaries.
The SPS security was first considered in concurrent

zero-knowledge protocols [Pas03], and later introduced
into the UC security [PS04]. In fact, [PS04] also pro-
posed the stronger angel-based UC security, which im-
plies SPS security. The angel-based UC security is
identical to UC security except that both the adversary
and the simulator have access to a super-polynomial-
time oracle (or angel). It was shown that the UC the-
orem holds in angel-based UC security [PS04]. On the
other hand, the UC theorem holds in SPS security only
under some special settings (as explained in Section
2.4).
In SPS security, the above negative results do not

hold. In the case of concurrent zero-knowledge, there
exist constant-round concurrent zero-knowledge proto-
cols with black-box simulators for any NP language in
the SPS security [Pas03]. In the case of UC security,
there exist protocols that securely realize any function-
ality in the plain model with SPS security [PS04, BS05,
CLP10, GGJS11]1. In particular, the latter means that
there exist protocols that securely realize the concur-
rent zero-knowledge functionality in the plain model
with SPS security.
However, the above protocols are either based on

non-standard assumptions (such as the existence of one-
way permutations secure against sub-exponential ad-
versaries) or not practical (they use some inefficient
primitives such as general but expensive constructions
of zero-knowledge protocols for all NP statements).
Thus, a natural question to ask is

In the plain model, does there exist constant-
round concurrent zero-knowledge protocol that
is practical and SPS-secure under standard
assumptions?

1 In fact, [PS04, CLP10] consider the angel-based UC security.

Our Results. We answer this question in the affir-
mative. Namely, we show the following theorem.

Main Theorem (informal). Assume that the DDH as-
sumption holds. Then, in the plain model, there exists
a constant-round protocol that securely realizes the con-
current zero-knowledge functionality for any NP lan-
guage with SPS security.

The formal description of Main Theorem is shown
in Section 4. To prove Main Theorem, we first con-
struct an SPS-UC concurrent commitment, namely a
commitment scheme that securely realizes the concur-
rent commitment functionality with SPS security. We
note that, although it is easy to construct commitment
schemes that remain secure under concurrent settings2,
the construction of SPS-UC commitments is not trivial.
Using this scheme as a primitive, we construct a proto-
col that securely realizes the concurrent zero-knowledge
functionality.
In this paper, we consider only the SPS security. As

future work, it may be interesting to construct similar
protocols in the angel-based UC security.

2 Preliminaries

2.1 Notations

Let N denote the set of all positive integers. For
any q ∈ N, let Zq denote the set {0, . . . , q − 1}. For

any set X, let x
U←− X denote that x is an element of

X chosen uniformly at random. For any random vari-

able X, let x
R←− X denote that x is a value chosen

at random according to the probability distribution of
X. For any randomized algorithm Algo, let Algo(x)
denote a random variable for the output of Algo on in-
put x with a uniformly-chosen random tape. For any
random variable X, let Algo(X) denote a random vari-

able for the output of Algo on input x
R←− X with a

uniformly-chosen random tape.
Let λ denote a security parameter. Let ε(λ) denote

an arbitrary negligible function in λ. For any proba-
bility ensembles X = {Xk}k∈N and Y = {Yk}k∈N, let

X
c
≈ Y denote that X and Y are computationally in-

distinguishable. That is, we have X
c
≈ Y if and only if

for any probabilistic polynomial-time distinguisher D
we have

|Pr [D(Xλ) = 1]− Pr [D(Yλ) = 1]| < ε(λ)

for sufficiently large λ.

2.2 The Assumption

In this paper, we use the DDH assumption. Let GenG
be a probabilistic polynomial-time algorithm that, on
input 1λ, outputs a description of a cyclic group G, its
order q, and a generator g ∈ G.

2 Non-interactive commitment schemes are clearly secure under
concurrent settings.

2

Definition 1 (DDH assumption). We say that the
DDH assumption holds if there exists an algorithm GenG
such that for any probabilistic polynomial-time algo-
rithm A, we have∣∣∣∣∣∣∣∣∣∣∣

Pr

A(G, q, ~g) = 1

∣∣∣∣∣∣∣
(G, q, g)

R←− GenG(1λ);

x, y
U←− Zq ;

~g := (g, gx, gy , gxy)

−Pr

A(G, q, ~g) = 1

∣∣∣∣∣∣∣
(G, q, g)

R←− GenG(1λ);

x, y, z
U←− Zq ;

~g := (g, gx, gy , gz)

∣∣∣∣∣∣∣∣∣∣∣
< ε(λ).

2.3 UC Security

In this section, we briefly review UC security. For
full details, see [Can01].
The model for protocol execution consists of the en-

vironment Z, the adversary A, and the parties run-
ning a protocol π. In the protocol execution, the en-
vironment Z is first invoked on external input z. The
environment Z adaptively gives inputs to the parties
and receives outputs from them. In addition, Z com-
municates freely with A throughout the protocol exe-
cution. On inputs from Z, the parties execute π by
sending messages to each other. The adversary A sees
all communications between the parties and controls
the schedule of the communications. In this paper, we
assume that there exist authenticated communication
channels3. Thus, the adversary cannot change the con-
tents of messages sent by the parties. The protocol exe-
cution ends when Z outputs a bit. Let Execπ,A,Z(λ, z)
denote a random variable for the output of Z on se-
curity parameter λ ∈ N and input z ∈ {0, 1}∗ with a
uniformly-chosen random tape. Let Execπ,A,Z denote
the ensemble {Execπ,A,Z(λ, z)}λ∈N,z∈{0,1}∗ .
The security of π is defined using the ideal protocol

for the ideal functionality F . In the execution of the
ideal protocol, all parties simply hand their inputs to
F . The functionality F carries out the desired task
securely and gives outputs to the parties. The par-
ties simply forward these outputs to Z. Let dummy
parties denote the parties in the ideal protocol. Let
π(F) denote the ideal protocol for functionality F . Let
IdealF,S,Z denote the ensemble Execπ(F),S,Z .
Then, the security of π is defined by comparing the

execution of π (referred to as the real world) and the
execution of π(F) (referred to as the ideal world).

Definition 2 (UC-realize). Let π be a protocol and F
be an ideal functionality. We say that π UC-realizes
F if for any adversary A there exists a simulator S
such that for any environment Z we have

Execπ,A,Z
c
≈ IdealF,S,Z .

F-hybrid protocols are protocols where all parties
have access to multiple copies of an ideal functional-
ity F . For an F-hybrid protocol π and a protocol φ

3 This is not essential since authentication can be realized by
a protocol, given a standard authentication infrastructure
[Can04].

that UC-realizes F , the composed protocol πφ/F is con-
structed by modifying π in such a way that each invo-
cation of F is replaced with the execution of φ. The
following theorem was proven in [Can01].

Theorem 1 (UC theorem). Let F be an ideal func-
tionality, π be an F-hybrid protocol, and φ be a proto-
col that UC-realizes F . Then for any adversary A there
exists a simulator S such that for any environment Z
we have

Execπφ/F ,A,Z
c
≈ Execπ,S,Z .

In this paper, we consider only static adversaries.
In other words, we assume that the adversary corrupts
parties only at the beginning of the protocol execution.

2.4 SPS-UC Security

SPS-UC security [PS04] is the same as UC security,
except that we allow the simulator to run in super-
polynomial time.
The UC realization is generalized naturally to the

SPS-UC security as follows.

Definition 3 (SPS-UC-realize). Let π be a protocol
and F be an ideal functionality. We say that π SPS-
UC-realizes F if for any adversary A there exists a
super-polynomial-time simulator S such that for any
environment Z we have

Execπ,A,Z
c
≈ IdealF,S,Z .

Unfortunately, the proof of the UC theorem in [Can01]
does not work in the SPS-UC security. However, if we
restrict our attention to an F-hybrid protocol π that
calls only a single instance of F , the proof of the UC
theorem in [Can01] also works in SPS-UC security.

Theorem 2 (single-instance UC theorem). Let F be
an ideal functionality, π be an F-hybrid protocol that
calls only a single instance of F , and φ be a protocol
that SPS-UC-realizes F . Then for any adversary A
there exists a super-polynomial-time simulator S such
that for any environment Z we have

Execπφ/F ,A,Z
c
≈ Execπ,S,Z .

The single-instance UC theorem is implicitly used in
[BS05].

3 SPS-UC Concurrent Commitment

In this section, we show our SPS-UC concurrent com-
mitment and prove its security. We use our SPS-UC
concurrent commitment to construct a concurrent zero-
knowledge protocol in Section 4.
The concurrent commitment functionality FcCOM is

shown in Figure 1. With a single run of FcCOM, the
sender can commit to multiple messages for the re-
ceiver. Here, ssid in FcCOM is the subsession ID. Sub-
session IDs are used to distinguish among the differ-
ent commitments that take place within a single run of

3

FcCOM. We note that FcCOM is different from the multi-
session commitment functionality F̂COM (or FMCOM) in
[CF01, CLOS02]. In particular, FcCOM does not cap-
ture any kind of non-malleability.� �

Functionality FcCOM

FcCOM proceeds as follows, running with a sender
C, a receiver R, and a simulator S.

Commit Phase: Upon receiving an input
(Commit, sid, ssid,m) from C, record
(ssid,m) and send (Receipt, sid, ssid)
to R and S. Ignore subsequent inputs
(Commit, sid, ssid, . . .).

Open Phase: Upon receiving an input
(Open, sid, ssid) from C, if there is
a recorded value (ssid,m) then send
(Open, sid, ssid,m) to R and S. Otherwise,
do nothing.� �

Figure 1: The concurrent commitment functionality
FcCOM.

3.1 Protocols

First, we show a challenge-response based extractable
commitment scheme 〈C,R〉, and then we show our SPS-
UC concurrent commitment Π, which uses 〈C,R〉 as a
primitive.

3.1.1 Extractable Commitment Scheme 〈C,R〉
Let Com be a non-interactive perfectly-binding com-

mitment scheme4. Then the extractable commitment
scheme 〈C,R〉, which is used in literature such as [PRS02,
PW09], is defined as follows.

Commit Phase. The sender C commits to an ele-
ment a of a group G for the receiver R as follows.

(1) C ⇒ R: For each i ∈ {1, 2, . . . , k = ω(log λ)}, C
chooses αi

U←− G and computes A
(0)
i

R←− Com(αi)

and A
(1)
i

R←− Com(aα−1
i). Then C sends these

{(A(0)
i , A

(1)
i)}ki=1 to R.

(2) R⇒ C: The receiver R chooses r1, . . . , rk
U←− {0, 1}

and sends them to C.

(3) C ⇒ R: The sender C opens all of {A(ri)
i }ki=1 to

R.

Open Phase. The sender C sends a, and opens all

of {(A(0)
i , A

(1)
i)}ki=1 to R.

It is known that 〈C,R〉 is a perfectly-binding com-
mitment scheme [PW09].

4 We can construct an efficient non-interactive perfectly-binding
commitment scheme under the DDH assumption using ElGa-
mal encryption.

3.1.2 SPS-UC Concurrent Commitment Π

Our SPS-UC concurrent commitment Π is described
below. Here, we use the algorithm GenG described in
Section 2.2. We assume that the length of the message
m is not long such that we have m ∈ Zq for any q that
GenG outputs.

Commit Phase. Upon receiving an input (Commit,
sid, ssid,m) from Z, the sender C commits to a mes-
sage m for the receiver R as follows.

(1) R ⇒ C: The receiver R computes (G, q, g0)
R←−

GenG(1λ). Next, R chooses x, y
U←− Zq and sets

h0 := gx0 , g1 := gy0 . Then the receiver R sends
(sid, ssid,G, q, g0, h0, g1) to C.

(2) C ⇔ R: The sender C chooses a
U←− G. Then C

commits to a for R using 〈C,R〉. In other words,
C and R do the following.

(2.1) C ⇒ R: For each i ∈ {1, 2, . . . , k = ω(log λ)},
C chooses αi

U←− G and computes A
(0)
i

R←−
Com(αi) and A

(1)
i

R←− Com(aα−1
i). Then C

sends (sid, ssid, (A
(0)
1 , A

(1)
1), . . . , (A

(0)
k , A

(1)
k))

to R.

(2.2) R⇒ C: The receiver R chooses r1, . . . , rk
U←−

{0, 1} and sends (sid, ssid, r1, . . . , rk) to C.

(2.3) C ⇒ R: The sender C opens all of {A(ri)
i }ki=1

to R. If C fails to open one of these commit-
ments, R aborts the protocol.

(3) R ⇒ C: The receiver R chooses b
U←− G and sends

(sid, ssid, b) to C.

(4) C ⇒ R: The sender C opens the commitment of
〈C,R〉 in step (2). If C fails to open the commit-
ment, R aborts the protocol.

(5) C and R set h1 := ab.

(6) C ⇒ R: The sender C chooses s, t
U←− Zq and sets

u := gs0h
t
0, v := gs1h

t
1. Then C sets c := (u, vgm0)

and sends (sid, ssid, c) to R.

(7) The receiver R outputs (Receipt, sid, ssid).

Open Phase. Upon receiving an input (Open, sid, ssid)
from Z, the sender C opens the commitment as follows.

(1) C ⇒ R: The sender C sends (sid, ssid,m, s, t) to
R.

(2) The receiver R sets u′ := gs0h
t
0 and v′ := gs1h

t
1. If

c = (u′, v′gm0) then R outputs (Open, sid, ssid,m).
Otherwise, R does nothing.

3.2 Security Proof

In this section, we prove the following theorem.

Theorem 3. Assume that the DDH assumption holds.
Then Π SPS-UC-realizes FcCOM.

Proof. We need to show that for any adversary A there
exists a super-polynomial-time simulator S such that
for any environment Z we have

ExecΠ,A,Z
c
≈ IdealFcCOM,S,Z . (1)

4

In the real world, the sender commits to multiple
messages using Π. These commitments are executed
concurrently and the adversary A controls the sched-
ule. In the ideal world, the sender commits to multiple
messages using FcCOM. A single run of FcCOM consists
of multiple subsessions, where a single message is com-
mitted to in each subsession.
First, we show the description of the simulator S for

any adversary A. The simulator S internally invokes
A and forwards every message from Z to the internal
A. For each message that the internal A outputs to Z,
the simulator S simply forwards it to the external Z.
Furthermore, S internally simulates a real world with
A as follows.

Case 1. Corrupted C and Honest R

Since the internal A commits to messages on behalf
of the corrupted C, the simulator S needs to interact
with A as a receiver. In addition, S needs to extract
the committed messages and send them to FcCOM.
For each subsession, S does the following.

• The simulator S starts the subsession in the same
way as the honest R does. That is, the simulator S
computes (G, q, g0)

R←− GenG(1λ), chooses x, y
U←− Zq,

sets h0 := gx0 , g1 := gy0 , and sends (G, q, g0, h0, g1) to
the internal A.

• Upon receiving {(A(0)
i , A

(1)
i)}ki=1 from A, the simu-

lator S chooses r′1, . . . , r
′
k

U←− {0, 1} and extracts the

committed values of {A(r′i)
i }ki=1 by breaking the hid-

ing property of Com in super-polynomial time.

• Then, S chooses r1, . . . , rk
U←− {0, 1} and sends them

to A in the same way as the honest R does.

• If A opens the commitments of Com correctly in re-
sponse to the challenge, S extracts the committed
value a of 〈C,R〉 by combining these opened val-
ues with the above extracted values5. Then S sends
b := a−1gxy0 to A. Here, if S finds out that the com-

mitment {(A(0)
i , A

(1)
i)}ki=1 of 〈C,R〉 is invalid when

S tries to extract a, the simulator S sends b
U←− G

instead.

• When A opens the commitment of 〈C,R〉, the sim-
ulator S verifies its validity in the same way as the
honest R does.

• Upon receiving a commitment c = (c0, c1) from A,
the simulator S computes m̃ := logg0(c1/c

y
0) in super-

polynomial time. Then, the simulator S sends (Commit,
sid, ssid, m̃) to FcCOM.

• If A opens the commitment correctly in the open
phase, S sends (Open, sid, ssid) to FcCOM. If A fails
to open, S does nothing.

5 Since the probability that (r1, . . . , rk) = (r′1, . . . , r
′
k) holds

is negligible, we simply assume (r1, . . . , rk) 6= (r′1, . . . , r
′
k) in

what follows.

Case 2. Honest C and Corrupted R

Since the internal A behaves as a receiver on behalf
of the corrupted R, the simulator S needs to commu-
nicate with A as a sender in the commit phase without
knowing what message the honest C sent to FcCOM.
Upon receiving a message (Receipt, sid, ssid) from

FcCOM, the simulator S chooses a random message m
and commits to m for A honestly. Upon receiving
a message (Open, sid, ssid,m′) from FcCOM, the sim-
ulator S computes x := logg0 h0, y := logg0 g1, and
z := logg0 h1 in super-polynomial time. If z = xy holds
(i.e., if (g0, h0, g1, h1) is a DDH tuple), S aborts the
simulation. Otherwise, S sets

s′ := s− x

z − xy
(m−m′) ,

t′ := t+
1

z − xy
(m−m′)

and sends (sid, ssid,m′, s′, t′) to A.

Case 3. Honest C and Honest R

The simulator S communicates with A as a sender
and a receiver. As a receiver, S behaves in the same
way as the honest receiver. As a sender, S behaves in
the same way as in Case 2.

Next, we show that (1) holds for each case.

Analysis of Case 1

We need to show that for any probabilistic polynomial-
time distinguisher D and any polynomial p, we have∣∣∣∣ Pr [D(ExecΠ,A,Z(λ)) = 1]

−Pr [D(IdealFcCOM,S,Z(λ)) = 1]

∣∣∣∣ < 1

p(λ)
(2)

for sufficiently large λ.
Let ` be an upper bound of the number of subses-

sions (i.e., the number of messages that A commits to)
and let δ(λ) := 3` · p(λ). We define the indices of the
subsessions based on the order in which the messages
of step (2.2) appear in the interaction between C and
R. That is, the message of step (2.2) of subsession 2
appears after the message of step (2.2) of subsession 1,
and the message of step (2.2) of subsession 3 appears
after the message of step (2.2) of subsession 2, and so
on.
Below, we use the hybrid argument by defining ma-

chines B0, . . . , B2`+1. Before defining these machines,
we describe the idea behind our argument. In the ideal
world, the simulator S extracts the committed value
a of 〈C,R〉 in step (2) of each subsession. Let us call
this committed value a the trapdoor secret of each sub-
session. Now, the machine B0 internally executes the
real-world protocol and the machine B2`+1 internally
executes the ideal-world protocol. In the sequence of
hybrid machines, we change B0 into B2`+1 step by step
by increasing the number of subsessions of which the
trapdoor secrets are extracted. That is, we will de-
fine B2(i−1) so that the trapdoor secrets of subsession
j (j = 1, . . . , i−1) are extracted and used as in the ideal

5

world. Next, we will define B2i−1 by modifying B2(i−1)

in such a way that the trapdoor secret of subsession i
is also extracted (but not used). Then, we will define
B2i by modifying B2i−1 in such a way that the trap-
door secret of subsession i is used as in the ideal world.
Each hybrid machine records these extracted trapdoor
secrets in a list a-List. We note that the hybrid ma-
chines, except B2`+1, do not use their super-polynomial
power to extract the trapdoor secrets6. Instead, they
use rewinding techniques and extract the trapdoor se-
crets using the extractability of 〈C,R〉.
Now, let us define the hybrid machinesB0, . . . , B2`+1.

First, we introduce some notations. The hybrid ma-
chines, except B2`+1, internally executes the real-world
protocol repeatedly. That is, they internally invoke ma-
chines such as Z and A, execute the protocol, rewind
all the machines, execute the protocol again, rewind all
the machines again, and so on. We let thread denote a
single execution of the protocol. A thread begins when
internal Z receives an input, and the thread ends when
internal Z outputs a bit. Each hybrid machine outputs
whatever internal Z outputs in the last thread. Let us
call this last thread the main thread of each hybrid
machine.

Machine B0: As its main thread, machine B0 in-
ternally executes the real-world protocol by internally
invoking Z, A, C, and R. The machine B0 simply
outputs whatever the internal Z outputs.

Machine B2i−1 (i = 1, . . . , `): First, B2i−1 runs in
the same way as B2(i−1), but B2i−1 does not output
(and does not halt) even after the main thread ofB2(i−1)

ends. At the time, the trapdoor secret of subsession
j (j = 1, . . . , i − 1) on the main thread of B2(i−1) is
recorded in the a-List. After the main thread of B2(i−1),
the machine B2i−1 rewinds this main thread7 and exe-
cutes it δ times with the same random tapes except in
step (2.2) of subsession i. Let us call these δ threads
the look-ahead threads. In each look-ahead thread, the
challenge r1, . . . , rk in step (2.2) of subsession i is cho-
sen fleshly. After the look-ahead threads, B2i−1 exe-
cutes the main thread of B2(i−1) once again with ex-
actly the same random tapes. This thread is the main
thread of B2i−1.
In the case that A opens the commitments of Com

correctly in step (2.3) of subsession i in the main thread
and in at least one of the δ look-ahead threads, B2i−1

extracts the trapdoor secret a of subsession i by com-
bining the opened values of these two threads. Then,
B2i−1 adds a pair (i, a) to the a-List. If B2i−1 finds out
that the commitment of 〈C,R〉 is invalid when it tries
to extract a, B2i−1 adds (i,⊥) to the a-List instead.
In the case that A did not open the commitments

of Com correctly in step (2.3) of subsession i in all δ
look-ahead threads but opened them correctly in the

6 If hybrid machines are super-polynomial-time machines, it is
difficult to show the indistinguishability between the hybrid
machines based on computational assumptions.

7 That is, B2i−1 rewinds all the machines such as Z and A.

main thread, B2i−1 outputs ⊥ and halts. Let us call
this event RewindAborti.
If RewindAborti does not occur, B2i−1 outputs what-

ever internal Z outputs in its own main thread.
We note that each look-ahead thread proceeds in ex-

actly the same way as the main thread of B2(i−1) (and
of B2i−1) until step (2.2) of subsession i, since the ran-
dom tapes used in this part are the same. In particular,
the message of step (2.1) in subsession j (j = 1, . . . , i)
in each look-ahead thread is the same as the message
in the main thread of B2(i−1). This means the trap-
door secret of subsession j (j = 1, . . . , i) in each look-
ahead thread is the same as the trapdoor secret in the
main thread of B2(i−1). Thus, the values recorded in
the a-List before the rewinding are valid even after the
rewinding.

Machine B2i (i = 1, . . . , `): B2i runs in the same
way as B2i−1 except that, in step (3) of subsession i in
the main thread, internal R sets b := a−1gxy0 if (i, a) is
recorded in the a-List for a 6= ⊥. If a = ⊥, internal R
sets b

U←− G as in B2i−1.

Machine B2`+1: B2`+1 internally executes the ideal-
world protocol by internally invoking Z, S, the dummy
party C and R. The machine B2`+1 outputs whatever
the internal Z outputs.

Next, we show the indistinguishability among hybrid
machines. Below, we let Execi(λ) denote the random
variable for the output of machine Bi.

B2(i−1) and B2i−1 (i = 1, . . . , `): If RewindAborti
does not occur in B2i−1, the output of B2(i−1) and the
output ofB2i−1 are identically distributed. RewindAborti
occurs in B2i−1 if A does not open the commitments
in step (2.3) on subsession i in all δ look-ahead threads
but opens them correctly in the main thread. Since A
opens these commitments correctly in each look-ahead
thread with the same probability as in the main thread,
we can show that RewindAborti occurs in B2i−1 with
probability at most 1/δ. Thus, for any probabilistic
polynomial-time distinguisher D, we have∣∣∣∣ Pr

[
D(Exec2(i−1)(λ)) = 1

]
−Pr [D(Exec2i−1(λ)) = 1]

∣∣∣∣ ≤ 1

δ(λ)
. (3)

B2i−1 and B2i (i = 1, . . . , `): B2i is the same as
B2i−1 except that B2i sets b := a−1gxy0 instead of

b
U←− G in step (3) of subsession i on the main thread.

Thus, from the DDH assumption, for any probabilistic
polynomial-time distinguisher D, we have∣∣∣∣ Pr [D(Exec2i−1(λ)) = 1]

−Pr [D(Exec2i(λ)) = 1]

∣∣∣∣ < ε(λ) . (4)

B2` and B2`+1: In B2`, all the trapdoor secrets are
extracted as in B2`+1. However, B2` uses rewinding
instead of their super-polynomial power. The view of
Z in the main threads in B2` and in B2`+1 are indis-
tinguishable if

6

• the computed trapdoor secrets are the same in B2`

and B2`+1, and

• in B2`+1, the simulator S can open the same mes-
sages as the internal A opened.

First, we show the indistinguishability under the con-
dition that RewindAborti does not occur in B2` for all
i. In this case, in each subsession, the trapdoor secret
a that B2` records in the a-List and the trapdoor secret
a that S computes in B2`+1 are identically distributed.
To see this, observe that in both machines we can think
the trapdoor secret a is computed by combining two re-
sponses of 〈C,R〉 for two different challenges. Addition-
ally, when the internal A opens the commitment cor-
rectly in the open phase with (m, s, t) in B2`+1, we have
h1 = gxy0 , c0 = gs0h

t
0, and c1 = gs1h

t
1g

m
0 = (gs0h

t
0)

ygm0
and thus we have m = logg0(c1/c

y
0) = m̃. This means

that S can open the same message as the internal A
opened. Therefore, we conclude that the views of Z in
the main threads of B2` and in B2`+1 are identically
distributed if RewindAborti does not occur in B2` for
all i.
Next, we compute the probability that RewindAborti

occurs in B2` for some i. From (3) and (4), we have∣∣∣∣ Pr [D(Exec0(λ)) = 1]
−Pr [D(Exec2`(λ)) = 1]

∣∣∣∣ ≤ `

δ(λ)
+ ε(λ) (5)

for any probabilistic polynomial-time distinguisher D.
Since RewindAborti does not occur in B0 for all i, we
conclude that RewindAborti occurs in B2` for some i
with probability at most `/δ(λ) + ε(λ).
Combining the above, we conclude that for any prob-

abilistic polynomial-time distinguisher D we have∣∣∣∣ Pr [D(Exec2`(λ)) = 1]
−Pr [D(Exec2`+1(λ)) = 1]

∣∣∣∣ ≤ `

δ(λ)
+ ε(λ) .

(6)

Finishing the Analysis of Case 1. From (5) and
(6), for any probabilistic polynomial-time distinguisher
D, we have∣∣∣∣ Pr [D(Exec0(λ)) = 1]

−Pr [D(Exec2`+1(λ)) = 1]

∣∣∣∣ ≤ 2`

δ(λ)
+ ε(λ) .

By substituting Exec0(λ) = ExecΠ,A,Z(λ), Exec2`+1(λ) =
IdealFcCOM,S,Z(λ)，and δ(λ) = 3` · p(λ), we have (2).

Analysis of Case 2

The views of Z in the real and ideal worlds are dif-
ferent in the following.

• In the ideal world, random messages are committed
to in the commit phase.

• In the ideal world, open information is not computed
honestly in the open phase.

First, we show the indistinguishability under the con-
dition that (g0, h0, g1, h1) is a non-DDH tuple in each
subsession. In this case, the value v in step (6) is uni-
formly random and independent of the value u. To

see this, observe that we have u = gs0h
t
0 = gs+xt

0 and
v = gs1h

t
1 = gys+zt

0 for random s and t, and the ex-
pressions s + xt and ys + zt are linearly independent
combinations of s and t when z 6= xy. Thus, the com-
mitment c = (u, vgm0) is uniformly distributed in G×G.
In addition, since we have z 6= xy, the simulation does
not abort in the ideal world. The open information
(m′, s′, t′) of S is valid since we have

gs
′

0 ht′

0 = g
s− x

z−xy (m−m′)

0 h
t+ 1

z−xy (m−m′)

0

= gs0g
− x

z−xy (m−m′)

0 ht
0g

x
z−xy (m−m′)

0

= gs0h
t
0 = c0

and

gs
′

1 ht′

1 g
m′

0 = g
s− x

z−xy (m−m′)

1 h
t+ 1

z−xy (m−m′)

1 gm
′

0

= gs1g
− xy

z−xy (m−m′)

0 ht
1g

z
z−xy (m−m′)

0 gm
′

0

= gs1h
t
1g

(m−m′)
0 gm

′

0 = gs1h
t
1g

m
0 = c1 .

Therefore, we conclude that the views of Z in the real
and ideal worlds are identically distributed if the tuple
(g0, h0, g1, h1) is a non-DDH tuple in each subsession.
Next, we compute the probability that (g0, h0, g1, h1)

is a DDH tuple in some subsessions. Using the hiding
property of 〈C,R〉, we can show that this probabil-
ity is negligible in the real world. Moreover, since S
internally behaves in the same way as the honest C
(with different message m) in the commit phase and
the computation of (g0, h0, g1, h1) is independent of the
message, we can conclude that this probability is also
negligible in the ideal world.
Combining the above, we conclude that (1) holds.

Analysis of Case 3

We can show that (1) holds by using the same argu-
ment as in Case 2.

4 Concurrent Zero-Knowledge

In this section, we prove Main Theorem. The concur-
rent zero-knowledge functionality FcZK, parameterized
by a relation R, is shown in Figure 2. We note that� �

Functionality FcZK

FcZK proceeds as follows, running with a prover P ,
a verifier V and a simulator S, and parameterized
with a relation R.

• Upon receiving (Prove, sid, ssid, x, w) from P , if
R(x,w) = 1 then send (Proof, sid, ssid, x) to S
and V . Otherwise, do nothing.� �

Figure 2: The concurrent zero-knowledge ideal func-
tionality FcZK.

FcZK is different from the multi-session zero-knowledge

7

functionality F̂ZK in [CLOS02]. In particular, FcZK

does not capture any kind of non-malleability.
Below, we give the formal description of Main The-

orem.

Main Theorem. Assume that the DDH assumption
holds. Then, there exists a constant-round protocol that
SPS-UC-realizes FcZK for any NP relation.

LetH denote the graph Hamiltonicity relation. That
is, we have

H(G,w) :=

{
1 (if w is a Hamiltonian cycle in graph G)

0 (otherwise)
.

Let FH
cZK be the functionality FcZK parameterized with

relation H. To prove Main Theorem, we use the three-
round protocol hc in [CF01], which UC-realizes FH

cZK in
the FcCOM-hybrid model8. The protocol hc consists of
parallel repetitions of the three-round protocol of Blum
for graph Hamiltonicity, where the prover commits to
values for the receiver with FcCOM. As noted in [CF01],
the protocol hc UC-realizes FcZK even if the adversary
is a super-polynomial-time machine since the security
of hc in the FcCOM-hybrid model is guaranteed with-
out any computational assumption. Thus, we have the
following theorem.

Theorem 4 ([CF01]). For any super-polynomial-time
adversary A there exists a super-polynomial-time sim-
ulator S such that for any environment Z we have

Exechc,A,Z
c
≈ IdealFH

cZK,S,Z .

The protocol hc calls only a single instance of FcCOM.
Therefore, using the SPS-UC commitment Π in Section
3 and the single-instance UC theorem in Section 2.4,
we have the following lemma.

Lemma 1. Assume that the DDH assumption holds.
Then, for any adversary A there exists a super-polynomial-
time simulator S such that for any environment Z we
have

ExechcΠ/FcCOM ,A,Z
c
≈ Exechc,S,Z .

Now, we are ready to prove Main Theorem.

Proof (of Main Theorem). Since the Hamiltonian cy-
cle problem is NP-complete, all we have to do is to
show that there exists a constant-round protocol that
SPS-UC-realizes FH

cZK. Clearly, hc
Π/FcCOM is a constant-

round protocol. In addition, from Theorem 4 and Lemma
1, protocol hcΠ/FcCOM SPS-UC-realizes FH

cZK.

8 Actually, the zero-knowledge functionality in [CF01] is a single-
session functionality and has some differences from FcZK.
Nonetheless, as noted in [CLOS02], it is easy to see that the
protocol hc UC-realizes FcZK in the FcCOM-hybrid model.

References

[BS05] Boaz Barak and Amit Sahai. How to play al-
most any mental game over the net - concur-
rent composition via super-polynomial simula-
tion. In FOCS, pages 543–552, 2005.

[Can01] Ran Canetti. Universally composable security:
A new paradigm for cryptographic protocols. In
FOCS, pages 136–145, 2001.

[Can04] Ran Canetti. Universally composable signature,
certification, and authentication. In CSFW,
pages 219–233, 2004.

[CF01] Ran Canetti and Marc Fischlin. Universally
composable commitments. In CRYPTO, pages
19–40, 2001.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lin-
dell. On the limitations of universally com-
posable two-party computation without set-up
assumptions. In EUROCRYPT, pages 68–86,
2003.

[CKPR01] Ran Canetti, Joe Kilian, Erez Petrank, and
Alon Rosen. Black-box concurrent zero-
knowledge requires Ω̃(logn) rounds. In STOC,
pages 570–579, 2001.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky,
and Amit Sahai. Universally composable two-
party and multi-party secure computation. In
STOC, pages 494–503, 2002.

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass.
Adaptive hardness and composable security in
the plain model from standard assumptions. In
FOCS, pages 541–550, 2010.

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai.
Concurrent zero-knowledge. In STOC, pages
409–418, 1998.

[GGJS12] Sanjam Garg, Vipul Goyal, Abhishek Jain, and
Amit Sahai. Concurrently secure computation
in constant rounds. In EUROCRYPT, 2012.

[GK96] Oded Goldreich and Ariel Kahan. How to con-
struct constant-round zero-knowledge proof sys-
tems for NP. J. Cryptology, 9(3):167–190, 1996.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles
Rackoff. The knowledge complexity of in-
teractive proof systems. SIAM J. Comput.,
18(1):186–208, 1989.

[Pas03] Rafael Pass. Simulation in quasi-polynomial
time, and its application to protocol composi-
tion. In EUROCRYPT, pages 160–176, 2003.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sa-
hai. Concurrent zero knowledge with logarith-
mic round-complexity. In FOCS, pages 366–375,
2002.

[PS04] Manoj Prabhakaran and Amit Sahai. New no-
tions of security: achieving universal compos-
ability without trusted setup. In STOC, pages
242–251, 2004.

[PW09] Rafael Pass and Hoeteck Wee. Black-box con-
structions of two-party protocols from one-way
functions. In TCC, pages 403–418, 2009.

8

