
Copyright c⃝The Institute of Electronics,
Information and Communication Engineers

SCIS 2013 The 30th Symposium on
Cryptography and Information Security

kyoto, Japan, Jan. 22 - 25, 2013
The Institute of Electronics,

Information and Communication Engineers

Homomorphic Signatures for Polynomial Functions with Shorter
Signatures

Ryo Hiromasa ∗ Yoshifumi Manabe † Tatsuaki Okamoto †

Abstract— We present homomorphic signatures for polynomial functions with shorter signatures
than the ones of Boneh and Freeman. In the signing algorithm, instead of using the preimage sampling
algorithm of Gentry, Peikert, and Vaikuntanathan, we use the algorithm of Micciancio and Peikert,
which is more efficient (the algorithm can sample smaller preimages) than the one of Gentry et al.

Consequently, the length of the signatures in the proposed scheme is Õ(n3), while the scheme of Boneh

et al. generates signatures of length Õ(n4.5).

Keywords: fully homomorphic encrytion, polynomially homomorphic signature.

1 Introduction

The polynomially homomorphic signature scheme pro-
posed by Boneh and Freeman [BF11] is a kind of di-
gital signature scheme. In this scheme, we can evalu-
ate polynomials on signed data, while fully homomor-
phic encryption allows us to compute arbitrary opera-
tions on encrypted data. More precisely, we consider
the following case. Alice has the set of numerical data
{m1, ...,mk}, e.g., grades of k students in a course. She
signs each triple (”grades”,mi, i) and obtains the set
of k signatures {σ1, ..., σk}. The signature set is stored
on a remote server. In addition, Alice asks the remote
server to compute a function f , e.g., mean, standard
deviation, and other data mining algorithms. The ser-
ver evaluates f on {σ1, ..., σk}, and therefore the server
obtains the signature σ. The signature σ authenticates
the triple (”grades”,m, ⟨f⟩), where ⟨f⟩ is an encoding
of the function f and m = f(m1, ...,mk). Then, the
server publishes (m,σ). By verifying that σ is the sig-
nature on the triple, anyone can check that the server
correctly computes f on the data set {m1, ...,mk}.

The scheme of [BF11] builds on the lattice-based
hash and sign signature scheme, which was described
in [GPV08]. Such a scheme, to sign messages, use
the algorithm that samples a preimage of a special
trapdoor oneway function, called Preimage Samplea-
ble Functions (PSFs). If we have the trapdoor, PSFs
allow us to sample preimages along some distribution.
In [GPV08], Gentry et al. first proposed an algorithm
for PSFs, which is also used in the scheme of [BF11].
Trapdoor generators for the algorithm were proposed
in [Ajt99, AP11]. As a recent work, Micciancio and
Peikert presented another trapdoor generator and sam-
pling algorithm for PSFs in [MP12].

∗ Kyoto University.
† NTT.

1.1 Our Results

We construct homomorphic signatures for polyno-
mial functions with shorter signatures than the ones
of [BF11]. Concretely, we replace the preimage sam-
pling algorithm of [GPV08], used for signing, with the
algorithm of [MP12]. As a result, the length of fresh
signatures is reduced from Õ(n4.5) to Õ(n3).
In this paper, we first introduce basic matters used

in the paper. Next, we describe the homomorphic sig-
natures for polynomial functions of [BF11]. Finally, we
present an improvement to the signature scheme.

2 Preliminaries

2.1 Notation

We denote the set of integers by Z and the set of
real numbers by R. Z[x] denotes the set of polynomials
whose coefficients are in Z. We let Fp be the finite field
that has p elements. ⟨f(x)⟩ is used to denote the group
generated by f(x). When we let G be some group and

P be some probability distribution, we use a
U←− G to

denote that a is chosen from the group G uniformly

at random and use b
R←− P to denote that b is chosen

along the probability distribution P.
We assume that vectors are in column form and are

written by using bold lower-case letters, e.g., x. The ith
element of a vector is denoted by xi. We let the length
of vectors be the l2 (Eclidean) norm of the vectors and
denote it by ∥ x ∥. The inner product between two vec-
tors is denoted by ⟨x,y⟩. Matrices are written by using
bold capital letters, e.g., X, and the ith column vector
of a matrix is denoted by xi. We write span(X) to de-
note the linear space spanned by X = (x1,x2, . . . ,xn),
i.e., span(X) = {Xr : r ∈ Rn}. When we refer to
the n × n identity matrix, we denote it by In. We let
∥ X ∥ be the maximum length of its vectors. We de-
note theGram-Schmidt orthogonalization of the vectors

1

X = (x1, ...,xn) by X̃ = (x̃1, ..., x̃n), where for all i, x̃i

is the vector orthogonal to {x̃1, ..., ˜xi−1, ˜xi+1, ..., x̃n}.
We let ∥ X̃ ∥ be the norm of the matrix after the Gram-
Schmidt orthogonalization.

2.2 Linear Algebra

For any square real matrix X, we let X+ be the
Moore-Penrose pseudoinverse matrix, which is the uni-
que matrix such that (XX+)X = X and X+(XX+) =
X+. If the matrix X is invertible, then X+ = X−1.

We say that a symmetric matrix S is positive definite
(or positive semi-definite), written S > 0 (S ≥ 0), if
for all nonzero x ∈ Rn xtSx > 0 (xtSx ≥ 0). A partial
order on symmetric matrices is defined by the positive
(semi-)definiteness: we denote S1 > S2 if (S1−S2) > 0,
and similarly for S1 ≥ S2.

For any matrix B ∈ Rn×m, the symmetric matrix
S = BBt is positive semi-definite, because for any non-
zero real vector x ∈ Rn we have xtSx =∥ Btx ∥2≥ 0,
where the inequality is always strict if and only if B is
invertible. We say that the matrix B is a square root
of S > 0, written B =

√
S if BBt = S. Every S ≥ 0

has a square root, which we can compute efficiently via
the Cholesky decomposition.

For any matrix B ∈ Rn×m, the singular value de-
composition of B is the fraction as B = QDPt, where
Q ∈ Rn×n and P ∈ Rm×m are orthogonal matrices,
and D ∈ Rn×m is a diagonal matrix that has nonne-
gative entries si(B), called the singular value of B, on
the diagonal in non-increasing order.

2.3 Lattices

B = {b1, ...,bn} ⊂ Rn is the set of n linearly inde-
pendent vectors. An n dimensional lattice Λ generated
by the basis B are defined as the linear combination
of its vectors, i.e., Λ = L(B) = {

∑
i zibi : zi ∈ Z}.

Using matrix notation, we can also define the lattice
as Λ = {Bz : z ∈ Zn}. The determinant of the lattice
Λ = L(B) is the absolute value of the determinant of
its basis matrix det(Λ) = |det(B)|.

We often use a particular family of so-called q-ary
lattices in many cryptographic applications. These are
lattices Λ such that qZn ⊆ Λ ⊆ Zn. Any integer lat-
tice Λ can be a q-ary lattice whenever q is the integer
multiple of the determinant det(Λ). For some positive
integer q,m, n, we let A ∈ Zn×m be an arbitrary ma-
trix and define two m dimensional q-ary lattices as:

Λ⊥(A) := {e ∈ Zm : Ae = 0 mod q},
Λ(A) := {y ∈ Zm : ∃s ∈ Zn,y = AT s mod q}.

From the definition, it is easy to see that these lattices
are dual to each other, i.e., Λ⊥(A) = q · Λ(A)∗ and
Λ(A) = q · Λ⊥(A)∗. For any u that has a solution to
Ax = u mod q, we define the shifted lattice as

Λ⊥
u (A) := {x ∈ Zm : Ax = u mod q}.

The coset and the quotient group Zm/Λ⊥(A) are in bi-
jective correspondence via the mapping (x+Λ⊥(A)) 7→

Ax mod q. In other words, by computing Ax mod q,
we can reduce x modulo the q-ary lattice Λ⊥(A).
Micciancio and Goldwasser describe that we can con-

vert a full-rank set in a lattice into a basis of the lattice
that has an equally low Gram-Schmidt norm.

Lemma 2.1. ([MG02, Lemma 7.1]) Let λ be an n di-
mensional lattice. There is a deterministic, polynomial-
time algorithm that takes as input an arbitrary basis of
λ and a full-rank set S = {s1, . . . , sn} in λ, and outputs
a basis T of λ such that

∥ T̃ ∥≤∥ S̃ ∥, ∥ T ∥≤
√
m

2
∥ S ∥ .

2.4 Polynomial Rings and Ideals

In the proposed scheme, we consider the polynomial
ring R = Z[x]/⟨F (x)⟩ for some monic, irreducible po-
lynomial F (x). Let F (x) be a degree n integer polyno-
mial, then each element over R is a degree n−1 polyno-
mial and corresponds to a vector of degree n. We can
identify R with the integer lattice Zn via the correspon-
dence. Addition over the ring is done by adding two
vectors component-wise. Multiplication is polynomial
multiplication modulo F (x). We let γF be the para-
meter bounding how much the multiplication increases
the length of the product. The parameter is defined as:

γF := sup
u,v∈R

∥ u · v ∥
∥ u ∥ · ∥ v ∥

.

We state the fact that says γF =
√
n when setting

f(x) to be the cyclotomic polynomial xn + 1 where n
is a power of 2.

Lemma 2.2. (implied by [Gen09a, Lemma 7.4.3]) Let
n be a power of two, let f(x) = xn + 1, and let R =
Z[x]/⟨f(x)⟩．For any s, t ∈ R, we have

∥ s · t ∥<
√
n· ∥ s ∥ · ∥ t ∥ .

An ideal of R = Z[x]/⟨F (x)⟩ is the additive sub-
group I ⊂R, which is closed under multiplication by
elements of R. By the correspondence between R and
Zn, we identify the ideal I with an ideal lattice that
is a sublattice of Zn. An Ideal I ⊂ R is prime if for
x, y ∈ R, x · y ∈ I implies that either x ∈ I or y ∈ I.
If I is prime ideal, then R/I ∼= Fpe , where the prime
integer p is called the characteristic of I and e is called
the degree of I. An ideal is principal if it can be writ-
ten as α · R for some α ∈ R. The norm of an ideal I
is the size of R/I. If I is a prime ideal, then we can
write I = p · R + h(x) · R for some prime p and some
polynomial h(x) ∈ R whose reduction modulo p is an
irreducible factor of f(x) mod p. In particular, if I is
a degree one prime ideal, h(x) = x−a for some integer
a. Then by mapping z(x) ∈ R to z(a) mod p we can
easily compute the quotient map R to Fp.
In the polynomially homomorphic signature scheme

of [BF11], a principal degree-one prime ideal is genera-
ted by the algorithm of Smart and Vercautren [SV10].

2

Lemma 2.3. (Section 3 in [SV10]) There is an algo-
rithm PrincGen that takes as input a monic irreduci-
ble polynomial F (x) ∈ Z[x] of degree n and a parame-
ter δ, and outputs a principal degree-one prime ideal
I = (p, x− a) ∈ Z[x]/⟨f(x)⟩ with its generator gI such
that ∥ gI ∥2< δ

√
n.

2.5 Gaussians

For any real s > 0 and any vector c ∈ Rn, we de-
fine a Gaussian function on Rn with a center c and a
parameter s as

∀x ∈ Rn, ρs,c(x) := exp(
−π· ∥ x− c ∥2

s2
).

When the subscripts s and c are taken to be 1 and
0, respectively, we may omit them. We let ρs,c(Λ) :=∑

x∈Λ ρs,c(x) be the discrete integral of ρs,c(x) over
the lattice Λ.

Using the covariance matrix, we can also define the
Gaussian function on Rn, which is

ρ(x) := exp(−π· ∥ x ∥2) = exp(−π · ⟨x,x⟩).

For a matrix B, let S = BBt ≥ 0. Applying a linear
transformation given by B, we obtain the (degenerate)
Gaussian function.

ρB(x) :=

{
ρ(B+x) = exp(−πxtS+x) if x ∈ span(B),
0 otherwise.

Since ρB is only determined by S, we denote it by ρ√S.
Normalizing ρs (or ρ√S) by its total measure, we

obtain the probability distribution function of the Gaus-
sian distribution. For any vector c ∈ Rn, real s > 0,
and n dimensional lattice Λ, the discrete Gaussian dis-
tribution over Λ is defined as

∀x ∈ Λ,DΛ,s,c :=
ρs,c(x)

ρs,c(Λ)
.

We may also omit subscripts as well as the Gaussian
function described above.

In [MR07], Micciancio and Regev propose the lat-
tice parameter related to Gaussian measures on latti-
ces, called the smoothing parameter.

Definition 2.1. For an n dimensional lattice Λ, and
a real ϵ > 0, the smoothing parameter ηϵ(Λ) is defined
to be the smallest s satisfying ρ1/s(Λ

∗ \ {0}) ≤ ϵ.

In [Pei08], Peikert shows the upper bound on the
smoothing parameter.

Lemma 2.4. ([Pei08, Lemma 3.5]) For any n dimen-
sional lattice Λ, and real ϵ > 0, it follows that

ηϵ(Λ) ≤
√
n ·

√
log(2n(1 + 1/ϵ)/π)

λ
(2)
1 (Λ∗)

,

where λ
(p)
1 (Λ∗) is the l2 norm of the shortest vector in

Λ∗. In particular, for any ω(
√
log n) function, there is

a negligible function ϵ(n) in which

ηϵ(Λ) ≤
√
n · ω(

√
log n)

λ
(2)
1 (Λ∗)

.

Moreover, another upper bound on the smoothing
parameter, related to the Gram-Schmidt norm, is shown
in [GPV08].

Lemma 2.5. ([GPV08, Lemma 3.1]) For any n di-
mensional lattice Λ, a basis B of Λ, a real ϵ > 0, it
follows that

ηϵ(Λ) ≤∥ B̃ ∥ ·
√

log(2n(1 + 1/ϵ))/π.

Then for any ω(
√
log n), there is a negligible function

ϵ(n) satisfying ηϵ(Λ) ≤∥ B̃ ∥ ·ω(
√
log n).

In [GPV08], Gentry, Peikert, and Vaikuntanathan
propose algorithms that sample from a lattice along
the discrete Gaussian distribution.

Lemma 2.6. ([GPV08, Theorem 4.1]) There is a pro-
babilistic polynomial-time algorithm that takes as input
a basis B of n dimensional lattice Λ = L(B), a para-
meter s ≥∥ B̃ ∥ ·ω(

√
logn), and a center c ∈ Rn, and

outputs a sample from a distribution that is statistically
close to DΛ,s,c.

Lemma 2.7. ([GPV08, Theorem 5.9]) There is a
probabilistic polynomial-time algorithm SamplePre that
takes as input a basis B of an n dimensional lattice
Λ = L(B), a parameter s ≥∥ B̃ ∥ ·ω(

√
log n), and a

vector u ∈ Rn, and outputs a sample from a distribu-
tion that is statistically close to DΛ+u,s.

Micciancio and Regev show the fact that we have an
upper bound on the norm of the element sampled from
a discrete Gaussian over the lattice.

Lemma 2.8. ([MR07, Lemma 4.4]) For any n dimen-
sional lattice Λ, real number s > ω(

√
log n), and center

c ∈ Rn,it holds that

Pr[∥ x ∥> s
√
n : x

R←− DΛ,s,c] ≤ 2−n+1.

We say that the random variable X over R is δ-
sub-Gaussian if for all t ∈ R, the moment generating
function of X satisfies

E[exp(2πtX)] ≤ exp(δ) · exp(πs2t2).

The term exp(πs2t2) is correctly the moment genera-
ting function of the Gaussian distribution Ds. Accor-
ding to [MP12], we need the factor exp(δ) when wor-
king with discrete Gaussian distributions. We say that
the random variable is sub-Gaussian if the factor δ = 0.
The class of sub-Gaussian random variables is quite a
wide class that contains the standard normal and all
bounded random variables. We have the following fact
about the singular value of the sub-Gaussian random
variables.

Lemma 2.9. (derived from [Ver12, Corollary 5.35])
Let X ∈ Rn×m be a δ-sub-Gaussian random matrix
with parameter s. There is a universal constant C >
0 such that for any t > 0, it follows that s1(X) ≤
C · s · (

√
m +

√
n + t) except with probability at most

2 exp(δ) exp(−πt2).

3

2.6 The Small Integer Solution Problem

The Small Integer Solution (SIS) problem is the pro-
blem that finds a short nonzero vector in a certain class
of lattices. In [BF11], Boneh and Freeman define a ge-
neral version of the SIS problem as follows.

Definition 2.2. Let Ln be the distribution over an n
dimensional lattice, and let L = {Ln}n∈N be a distri-
bution ensemble. The L−SISn,β problem is as follows:

given a lattice Λ
R←− Ln, find a nonzero vector v ∈ Λ

satisfying ∥ v ∥≤ β. If a probabilistic, polynomial-
time algorithm B takes as input a lattice Λ, the ad-
vantage of B, denoted by L − SIS − Adv[B, (n, β)], is
defined as the probability that B outputs a solution to
an L − SISn,β problem. L − SISn,β is infeasible if for
all B, L − SIS−Adv[B, (n, β)] = negl(n).

3 Homomorphic Signatures for Polyno-
mial Functions

In this section, we describe the polynomially homo-
morphic signature scheme of [BF11]. Boneh and Free-
man construct the scheme by using ideal lattices in a
way that is a signature analogue of the fully homomor-
phic encryption scheme proposed by [Gen09b].

A polynomially homomorphic signature scheme con-
sists of four probabilistic, polynomial-time algorithms
(Setup, Sign, Verify,Evaluate).

• Setup(1n, k):On input a security parameter n and
a data set size k, generate a public key and a
secret key.

1. Choose a monic irreducible polynomial F (x)
of degree n from Z[x]. Let R := Z[x]/⟨F (x)⟩
be the polynomial ring corresponding to the
lattice Zn. The ringR is the signature space.

2. Run the PrincGen algorithm of Lemma 2.3
twice on input a polynomial F (x) and its
degree n to obtain distinct principal degree-
one prime ideals I = (p, x − a) and J =
(q, x− b) of R with their generators gI and
gJ , respectively. The prime p defines the
message space Fp.

3. Applying the algorithm of Lemma 2.1 to the
set {gIgJ , gIgJ x, . . . , gIgJ xn−1}, generate
a basis T of I · J .

4. Let v := γ2
F · n3. Choose positive integers

y = poly(n) and d = O(1). The parame-
ters y and d define the set of admissible
function F ⊂ Fp[x1, ..., xk] with coefficients
in {−y, ..., y}, degree at most d, and con-
stant term zero. Let {Yj}lj=1 (where l =(
k+d
d

)
− 1) be the set of non-constant mono-

mials xe1
1 · · ·x

ek
k of degree

∑
ek ≤ d, ordered

lexicographically. Let m⃗ = (m1, . . . ,mk),
then any polynomial function f ∈ F is en-
coded as ⟨f⟩ = (c1, ..., cl) ∈ Zl, and deter-

mined by f(m⃗) =
∑l

j=1 cjYj(m⃗).

5. Let H : {0, 1}∗ → (Fq)
k be a hash function.

6. Output pk = (F (x), p, q, a, b, v, y, d,H) and
sk = T.

• Sign(sk, τ,m, i):On input a secret key sk, a tag τ ,
a message m, and an index i of m in the data set,
output a signature on m.

1. Compute (α1, . . . , αk)← H(τ).

2. Compute h = h(x) ∈ R satisfying h(a) = m
mod p and h(b) = αi mod q.

3. Output a signature

σ ← SamplePre(I · J ,T, h, v) ∈ (I · J) + h.

• Verify(pk, τ,m, σ, f):On input a public key pk, a
tag τ , a message m, a signature σ, and a function
f , verify that σ is a signature on m computed by
applying f . If the received signature holds all of
the following conditions, then output 1; otherwise
output 0.

1. ∥ σ ∥≤ l · y · γd−1
F · (v

√
n · log n)d.

2. σ(a) mod p = m.

3. σ(b) mod q = ωτ (⟨f⟩). To evaluate the
hash function ωτ (⟨f⟩), do the following:

(a) Compute (α1, . . . , αk)← H(τ).

(b) Evaluate ωτ (⟨f⟩) =
∑l

j=1 cjYj(α1, ..., αk).

• Evaluate(pk, τ, f, (σ1, ..., σk)):Take as input a pu-
blic key pk, a tag τ , a function f , and a tu-
ple of signatures (σ1, ..., σk), and evaluate f on
(σ1, ..., σk).

1. Lift f ∈ Fp[x1, ..., xk] to Z[x1, ..., xk] by re-

defining f̂ :=
∑l

j=1 cjYj(x1, ..., xk).

2. Output f̂(σ1, ..., σk).

Boneh and Freeman show that the above scheme is
correct in the following Lemma.

Lemma 3.1. ([BF11, Lemma 6.1]) The polynomially
homomorphic signature scheme is correct with overw-
helming probability.

4 An Improvement of the Polynomially
Homomorphic Signature

In this section, we show how to reduce the length of
signatures in the polynomially homomorphic signature
scheme of [BF11]. In the first place, the scheme gene-
rates signatures by computing a preimage of a special
trapdoor one-way function, called preimage samplea-
ble functions. If we have a trapdoor for the functions,
we can sample a preimage according to a Gaussian-like
distribution. For example, we consider the function
fA(x) = Ax mod q for some matrix A. When we fix
a vector u, if we know a trapdoor for fA, we can sam-
ple a preimage x such that u = Ax mod q along the
Gaussian distribution. Sampling algorithms for such
functions were proposed in [GPV08,MP12].

4

4.1 The Preimage Sampling Algorithm of [MP12]

In the algorithm of [MP12], Micciancio and Peikert
use the matrixG, called a primitive matrix, that we can
efficiently sample a preimage for the function fG(x) =
Gx mod q. We say that G is primitive if its rows ge-
nerate all of Zm

q , i.e., G ·Zw = Zm
q . Usually, G is given

as some fixed and public matrix. Concretely, when we
let gt = (1, 2, . . . , 2l−1) ∈ Zl where l = ⌈log2 q⌉, G is
defined as follows:

G :=

gt

gt

. . .

gt

 ∈ Zn×nl.

In [MP12], properties of G are summarized in the fol-
lowing Lemma.

Lemma 4.1. ([MP12, Theorem 4,1]) For any integer
q ≥ 2, n ≥ 1, and l = ⌈log2 q⌉, there is a primitive
matrix G ∈ Zn×nl such that

• The lattice Λ⊥(G) has a known basis S ∈ Znl×nl

with ∥ S̃ ∥≤
√
5 and ∥ S ∥≤ max{

√
5,
√
l}.

• Preimage sampling for fG(x) = Gx mod q with
Gaussian parameter s ≥∥ S̃ ∥ ·ω(

√
log n) can be

performed in quasilinear O(n · logc n) time.

Since G is fixed, the basis S of Λ⊥(G) is also fixed.
Micciancio and Peikert define S as

S :=

Sl

Sl

. . .

Sl

Sl

 ∈ Znl×nl,

where we let (q0, . . . , ql−1) be the binary decomposition
of q and

Sl :=

2 q0
−1 2 q1

−1 q2
. . .

...
2 ql−2

−1 ql−1

∈ Zl×l.

The preimage sampleable function of [MP12] allows
us to sample shorter preimages than [GPV08, AP11].
In [MP12], Micciancio and Peikert use a new trapdoor
notion called a G-trapdoor to improve the quality of
samples (the length of the preimage). By the norm
of the ideal lattices, we cannot use this notion without
any changes, so we slightly modify and inject the notion
into the proposed signing algorithm.

Definition 4.1. Let A ∈ Zn×n
q and G ∈ Zn×nl

q be
matrices with l = ⌈log2 q⌉. A G-trapdoor for A is a
matrix R ∈ Zn×(nl−n) such that A[R ∥ In] = HG for
some invertible matrix H ∈ Zn×n.

The matrix H is determined and can be efficiently
computed from the matrices A,R and,G.

Algorithm 1 TrapGen′(T,m): On input a basis T ∈
Zn×n and a integer m, compute a matrix A, G-
trapdoor R, and a tag H.

1: Compute a vector a ∈ Zn such that Ta ≡ 0
mod pq. Since det(T) ≡ 0 mod pq, T has pq as
an eigenvalue. For some vector a, Ta = pq · a ≡ 0
mod pq, so we can always compute the vector a via
linear algebra.

2: Let a be the element in R corresponding to a. De-
fine a matrix as A := {a, ax, . . . , axn−1} ∈ Zn×n.

3: Let l := ⌈log pq⌉ and choose a G-trapdoor R
R←−

Dn×(nl−n)
Z,1 .

4: For the primitive matrix G ∈ Zn×nl, compute a
matrix H ∈ Zn×n satisfying A[R ∥ In] = HG.

Algorithm 2 SamplePre′(A,R,H,u, v) of [MP12]: On
input a matrixA, aG-trapdoorR, a tagH, a vector u,
and a Gaussian parameter v, sample from the discrete
Gaussian distribution DΛ⊥

u (A),v·logn.

1: Choose s ≥
√
5 and let ΣG := s2 · Inl.

2: Let Σp := v2In − [R ∥ In]ΣG

[
Rt

In

]
.

3: Sample p
R←− DZn,

√
Σp·logn

.

4: Compute v := H−1(u−Ap).

5: Sample z
R←− DΛ⊥

v (G),
√
ΣG·logn.

6: Compute x := p+
[
R ∥ In

]
z.

4.2 Constructions

In Algorithms 1 and 2, we describe the algorithm
that generates a G-trapdoor for the ideal lattice I · J
and the Gaussian sampler of [MP12] for generating
signatures, respectively. By replacing SamplePre with
SamplePre′, we obtain the signing algorithm that ge-
nerates smaller signatures. For this replacement, we
slightly modify the Setup algorithm of [BF11] as fol-
lows.

Setup′(1n, k):On input a security parameter n and
a data set size k, generate a public key and a se-
cret key.

1. Choose a monic irreducible polynomial
F (x) ∈ Z[x] of degree n. LetR := Z[x]/⟨F (x)⟩
be the polynomial ring corresponding to the
lattice Zn.

2. Run the PrincGen algorithm of Lemma 2.3
twice on input a polynomial F (x) and its
degree n to obtain distinct principal degree-
one prime ideals I = (p, x − a) and J =
(q, x− b) of R with their generators gI and
gJ , respectively.

3. Define a matrix

T := {gIgJ , gIgJ x, . . . , gIgJ xn−1}.

4. (A,R,H)← TrapGen′(T).

5

5. Let v :=
√
n ·

√
s1(R)2 + 1 · s1(S). Choose

positive integers y = poly(n) and d = O(1).

6. Let H : {0, 1}∗ → (Fq)
k be a hash function.

7. Output pk = (F (x), p, q, a, b, v, y, d,H) and
sk = (A,R,H).

We also modify the Sign algorithm as follows.

Sign′(sk, τ,m, i):On input a secret key sk, a tag
τ , a message m, and an index i of m in the data
set, output a signature on m.

1. Compute (α1, . . . , αk)← H(τ).

2. Compute h = h(x) ∈ R satisfying h(a) = m
mod p and h(b) = αi mod q. Let h be the
vector identified with the ring element h.

3. u := Ah mod q.

4. Output the signature x ∈ h+ (I · J) corre-
sponding to the vector

x← SamplePre′(A,R,H,u, v).

The system parameters defined by pk are the same as
described in Section 3.

Lemma 4.2. The improved polynomially homomor-
phic signature scheme is correct.

Proof. Since the fresh signature x generated by Sign′

holds that Ax = u, we have x = h + Λ⊥(A). Via
the coefficient embedding, the ring element x corre-
sponding to the vecotr x is equal to a ring element in
h+ I · J . Hence, for fresh signatures, we have

x(a) mod p = mi and x(b) mod q = αi,

so the verification conditions are satisfied. Evaluated
signatures also hold the verification conditions as well
as in Lemma 3.1. □

When the Gaussian parameter v is greater than the
smoothing parameter of the lattice Λ, the Gaussian dis-
tribution DΛ,v,c behaves like the continuous Gaussian
distribution Dv,c in many respects. In [MP12], the kno-
wledge related to the G-trapdoor gives a short basis of
Λ⊥(A), which we denote by BA. The Gaussian para-
meter v · log n =

√
s1(R)2 + 1 ·

√
s1(ΣG) + 2 · log n,

chosen in the preimage sampling algorithm of [MP12],
is greater than ∥ B̃A ∥ · logn ≥ ηϵ(Λ

⊥(A)). There-
fore, we have v · log n ≥ ηϵ(Λ

⊥(A)). In the proposed
scheme, however, it is difficult to obtain such a short
basis. Thus we show the alternative upper bound on
the smoothing parameter.

Lemma 4.3. For any G-trapdoor R ∈ Zn×(nl−n), any
basis S ∈ Znl×nl of Λ⊥(G), and negligible ϵ > 0, we
have

ηϵ(Λ
⊥(A)) ≤

√
n · s1([R ∥ In]) · s1(S) · ω(

√
log n).

Proof. By the structure of [R ∥ In] · S, for any v ∈
Λ⊥(A)∗, it follows that vt ·[R ∥ In]·S ∈ Znl\{0}. Now
we let SA = [R ∥ In] · S and denote the ith column of
SA by SA,i. Then since it follows that for some vector
e ∈ Znl,

⟨v,SA·e⟩ = e1·⟨v,SA,1⟩+e2·⟨v,SA,2⟩+· · ·+enl·⟨v,SA,nl⟩,

there are unit vectors such that ⟨v,SA · e⟩ ≥ 1. For
such a unit vector e, we have

1 ≤ ⟨v,SA · e⟩
≤ ∥ v ∥2 · ∥ SA · e ∥2
≤ ∥ v ∥2 ·s1(SA)· ∥ e ∥2
≤ ∥ v ∥2 ·s1([R ∥ In]) · s1(S) (1)

Let λ
(2)
1 (Λ⊥(A)∗) be the l2 norm of the shortest vector

in Λ⊥(A)∗. Since we have the inequation (1) for any
vector v ∈ Λ⊥(A)∗, it follows that

(1) ⇔ 1 ≤ λ
(2)
1 (Λ⊥(A)∗) · s1([R ∥ In]) · s1(S)

⇔ 1

λ
(2)
1 (Λ⊥(A)∗)

≤ s1([R ∥ In]) · s1(S).

Therefore, Lemma 2.4 gives the upper bound on the
smoothing parameter as

ηϵ(Λ
⊥(A)) ≤

√
n

λ
(2)
1 (Λ⊥(A)∗)

· ω(
√

logn)

≤
√
n · s1([R ∥ In]) · s1(S) · ω(

√
log n).

□

4.3 The Length of Fresh Signatures

In the scheme of [BF11], when we set F (x) = xn+1,
the expansion factor γF is

√
n by Lemma 2.2, so the

length of fresh signatures is v
√
n · log n = Õ(n4.5) by

Lemma 2.8. In the proposed scheme, the length of fresh
signatures is Õ(n3).
The proposed scheme uses the algorithm SamplePre′

of [MP12] to generate signatures. SamplePre′ outputs
x = p+

[
R ∥ In

]
z, so by the linearity of the variance,

x is output from the Gaussian distribution with para-
meter v · log n, and hence x has a length of at most
v
√
n · logn by Lemma 2.8. In the Setup′ algorithm, the

Gaussian parameter v is set as v =
√
n ·

√
s1(R)2 + 1 ·

s1(S), which satisfies v · log n ≥ ηϵ(I · J) by Lemma
4.3. A matrix is positive definite if and only if eigenva-
lues of the matrix are positive, and the eigenvalues are
the square of singular values of the matrix, so Σp is po-
sitive definite as long as v ≥ s1([R ∥ In]) · s1(

√
ΣG) ≥

s1([R ∥ In]·
√
ΣG). In Lemma 2.3, PrincGen chooses the

ideal of norm ∥ G(x) ∥n2 · ∥ F (x) ∥n2 where G(x) is the
polynomial whose coefficients are at most about 2

√
n

and F (x) is the cyclotomic polynomial xn + 1 chosen
in the Setup′. Since pq ≈ (∥ G(x) ∥n2 · ∥ F (x) ∥n2)2 =
(n · 22

√
n)n · 2n ,

√
l =

√
⌈log pq⌉ is O(n3/4). By the

structure of S, s1(S) = s1(Sl) = O(
√
l) = O(n3/4),

so the Gaussian parameter v satisfies the condition
v ≥ s1([R ∥ In]) · s1(

√
ΣG).

6

By Lemma 2.9, s1(R) = O(
√
nl) = O(n5/4), since

the distribution Dn×(nl−n)
Z,1 used to choose R is a sub-

Gaussian distribution. As described above, s1(S) =
O(n3/4), so v =

√
n ·

√
s1(R)2 + 1 · s1(S) = O(n2.5).

Eventually, the length of fresh signatures is Õ(n3) by
Lemma 2.8.

4.4 Unforgeability

Boneh and Freeman define the unforgeability of ho-
momorphic signature schemes in [BF11].

Definition 4.2. A homomorphic signature scheme S =
(Setup, Sign,Verify,Evaluate) is unforgeable if for all k
and all polynomial-time adversaries A, the advantage
of the adversary A in the following game is negligible
in the security parameter n.

Setup: To obtain (pk, sk), the challenger runs
Setup(1n, k) and gives pk to the adversary A. The
public key defines a message spaceM, a signature
space Σ, and the set of admissible functions f :
Mk →M.

Queries: The adversary can query to the Sig-
ning oracle, adaptively. A specifies a sequence of
data sets mi ∈ Mk. For i = 1, ..., k, the challen-

ger chooses τi
U←− {0, 1}n uniformly at random,

and gives the tag τi and the signatures σi,j ←
Sign(sk, τi,mi,j , j) for j = 1, ..., k to A.

Output: A outputs a tag τ∗, a message m∗ ∈M,
a function f ∈ F , and a signature σ∗ ∈ Σ.

The adversary wins the game if

Verify(pk, τ∗,m∗, σ∗, f) = 1

and

1. for all i, τ∗ ̸= τi, or

2. for some i, τ∗ = τi, but m
∗ ̸= f(m⃗i).

The first condition is called a type 1 forgery, and the
second condition is called a type 2 forgery. The advan-
tage of A is defined as the probability that A wins the
above game.

The following theorem states the security of the im-
proved polynomially homomorphic signature scheme.

Theorem 4.1. For some constant n, let Fn be the
polynomial chosen in Step 1 of the Setup′ algorithm,
and let Ln be the probability distribution of the ideal J
output by the PrincGen algorithm when given a polyno-
mial Fn(x) and a parameter δ = n. Let LF be the set
{Ln}n∈N, and let d = p/2. If LF − SISβ is infeasible
for

β = 2 ·
(
k + d

d

)
· y · γd−1

F · (v
√
n)d,

then the improved polynomially homomorphic signature
scheme is unforgeable in the random oracle model.

Proof. Here, we only describe the construction of the
algorithm that breaks the unforgeability of the impro-
ved polynomially homomorphic signature scheme, since
the rest of the proof is almost identical to the one
of [BF11]. Let A be the polynomial-time adversary
that wins the security game of Definition 4.2. When
given the challenge lattice (Ideal) J , we construct the
algorithm B that solves the LF − SISβ problem. The
algorithm B simulates the Setup′ algorithm, the signing
oracle, and the hash oracle.

Setup’ algorithm: Using the PrincGen algo-
rithm, generate an ideal I with its generator gI .
For the ideal I, using the algorithm TrapGen′,
obtain AI ,RI , and HI . Choose all other para-
meters as in the real Setup′ algorithm from the
ideal I and the challenge ideal J .

Hash oracle H: On input τ , if τ has already
been queried to H, then return H(τ). Otherwise,
for i = 1, . . . , k, choose σi ← DZn,v, and define
H(τ) := (σ1(b) mod q, . . . , σk(b) mod q).

Signing oracle: When the adversary A queries
the data set (m1, . . . ,mk) ∈ (Fp)

k, do the follo-
wing.

1. Choose τ
U←− {0, 1}n. If τ has already been

queried, then abort.

2. For i = 1, . . . , k, choose hi ∈ R satisfying
hi(a) mod p = mi.

3. Compute ui := AIhi for hi ∈ Zn correspon-
ding to hi.

4. Choose σi ← SamplePre′(AI ,RI ,HI ,ui, v).

5. H(τ) := (σ1(b) mod q, . . . , σk(b) mod q).

6. Give τ and (σ1, . . . , σk).

Eventually, the adversary A outputs a tag τ∗, a mes-
sage m∗, a function f encoded as ⟨f⟩ = (c1, . . . , cl) ∈
Zl, and a signature σ∗. Without loss of generality, we
may assume that the tag τ∗ has already been queried
to the hash oracle, and let σ⃗ = (σ1, . . . , σk) be the
set of values chosen when computing H(τ∗). We let
σf :=

∑
i ciYi(σ⃗), and the algorithm B outputs σ∗−σf .

□

5 Conclusion

We constructed a polynomially homomorphic sig-
nature scheme with shorter signatures than the ones
of [BF11], replacing the preimage sampling algorithm
of [GPV08] with the algorithm of [MP12]. In [BF11],
when the cyclotomic polynomial to define polynomial
rings is xn+1, the length of fresh signatures is Õ(n4.5).
In the proposed scheme, fresh signatures have length
Õ(n3). The secret key of the proposed scheme is of bit
length O(n3.5), while the secret key used in [BF11] is
of bit length Õ(n). Therefore, it is desirable to reduce
the length of the secret key.

7

References

[Ajt99] Miklós Ajtai. Generating hard instances of
the short basis problem. ICALP, pages 1–9,
1999.

[AP11] Joel Alwen and Chris Peikert. Generating
shorter bases for hard random lattices. The-
ory of Computing Systems, 48(3):535–553,
2011.

[BF11] Dan Boneh and David Mandell Free-
man. Homomorphic signature for polyno-
mial functions. Advances in Cryptology -
EUROCRYPT 2011, LNCS, 6632:149–168,
2011.

[CHKP12] David Cash, Dennis Hofheinz, Eike Kiltz,
and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. Journal of Crypto-
logy, 25(4):601–639, October 2012.

[Gen09a] Craig Gentry. A FULLY HOMO-
MORPHIC ENCRYPTION SCHEME.
PhD thesis, Stanford University,
http://crypto.stanford.edu/craig, 2009.

[Gen09b] Craig Gentry. Fully homomorphic encryp-
tion using ideal lattices. STOC, pages 169–
178, 2009.

[GPV08] Craig Gentry, Chris Peikert, and Vinod
Vaikuntanathan. How to use a short ba-
sis: Trapdoors for hard lattices and new
cryptographic constructions. STOC, pages
197–206, 2008.

[Lyu12] Vadim Lyubashevsky. Lattice signatures
without trapdoors. Advances in Cryptology
- EUROCRYPT 2012, LNCS, 7237:738–
755, 2012.

[MG02] Daniele Micciancio and Shafi Goldwasser.
Complexity of Lattice Problems: A cryp-
tographic perspective, volume 671 of The
Kluwer International Series in Engineering
and Computer Science. Kluwer Academic
Publishers, Boston, Massachusetts, March
2002.

[MP12] Daniele Micciancio and Chris Peikert.
Trapdoors for lattices: Simpler, tighter,
faster, smaller. Advances in Cryptology -
EUROCRYPT 2012, LNCS, 7237:700–718,
2012.

[MR07] Daniele Micciancio and Oded Regev.
Worst-case to average-case reduction based
on Gaussian measures. SIAM J.Comput,
37(1):267–302, 2007.

[MR09] Daniele Micciancio and Oded Regev.
Lattice-based cryptography. In Da-
niel J. Berstein, Johannes Buchmann,

and Erik Dahmen, editors, Post-quantum
Cryptography, chapter 5, pages 147–
187. Springer, 2009. Available at
http://www.cs.tau.ac.il/ odedr/papers/pqc.pdf.

[Pei08] Chris Peikert. Limits on the hardness of the
lattice problems in l∞ norms. Computatio-
nal Complexity, 17(2):300–351, 2008.

[Pei10] Chris Peikert. An efficient and parellel
Gaussian sampler for lattices. Advances
in Cryptology - CRYPTO 2010, LNCS,
6223:80–97, 2010.

[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Ta-
naka, and Keita Xagawa. Efficient public
key encryption based on ideal lattices. Ad-
vances in Cryptology - ASIACRYPT 2009,
LNCS, 5912:617–635, 2009.

[SV10] Nigel P. Smart and Frederik Vercauteren.
Fully homomorphic encryption with relati-
vely small key and ciphertext sizes. Pu-
blic Key Cryptography - PKC 2010, LNCS,
6056:420–443, 2010.

[Ver12] Roman Vershynin. Introduction to
the non-asymptotic analysis of random
matrices. In Yonina C. Eldar and
Gitta Kutyniok, editors, Compressed Sen-
sing, Theory and Applications, chap-
ter 5, pages 210–268. Cambridge Univer-
sity Press, 2012. Available at http://www-
personal.umich.edu/ romanv/papers/non-
asymptotic-rmt-plain.pdf.

8

