
Copyright c©The Institute of Electronics,
Information and Communication Engineers

SCIS 2013 The 30th Symposium on
Cryptography and Information Security

kyoto, Japan, Jan. 22 - 25, 2013
The Institute of Electronics,

Information and Communication Engineers

On the Round-Complexity Lower Bound of CCA-Secure
Commitments

Susumu Kiyoshima ∗ Yoshifumi Manabe † Tatsuaki Okamoto ‡

Abstract— We study commitment schemes that are secure against chosen commitment attack
(CCA-secure commitments). Using an idea behind the impossibility of o(logn/ log log n)-round black-
box concurrent zero-knowledge proofs, we show that if we use black-box reductions to prove CCA
security, we cannot construct any o(logn/ log log n)-round CCA-secure commitment based on falsifiable
polynomial-time hardness assumptions.

Keywords: CCA-secure commitment, lower bound, falsifiable assumption, black-box reduction

1 Introduction

1.1 Background

Commitment schemes are fundamental two-party pro-
tocols in cryptography, and used as building blocks of
various cryptographic protocols.

The basic security requirements of commitment schemes
are the hiding property and the binding property. The
hiding property guarantees that the committer can com-
mit to a value while keeping it secret from the receiver.
The binding property guarantees that after commit-
ting to a value, the committer cannot decommit the
commitment to two distinct values.

Due to the importance of commitment schemes, var-
ious works proposed commitment schemes with addi-
tional security guarantees. An example of such a com-
mitment scheme is a (concurrent) non-malleable com-
mitment scheme [DDN00, PR05], which plays impor-
tant roles in constructing round-efficient general secure
multi-party computation (MPC) protocols (i.e., pro-
tocols for any functionality) [KOS03, Pas04, LPV09,
LP11, Goy11].

Recently, Canetti et al. [CLP10] proposed a com-
mitment scheme that guarantees very strong security:
security against chosen commitment attack (or CCA
security). Then, they showed that CCA-secure com-
mitment schemes can be used to construct a universally
composable protocol for general secure MPC in the
plain model (i.e., without any trusted setup)1. Thus,
with a CCA-secure commitment scheme, we can con-
struct a general secure MPC protocol that remains se-
cure even when many other protocols are concurrently

∗ Kyoto University (kiyoshima@ai.soc.i.kyoto-u.ac.jp)
† NTT and Kyoto University (manabe.yoshifumi@lab.ntt.co.jp)
‡ NTT and Kyoto University (okamoto.tatsuaki@lab.ntt.co.jp)
1 Recall that in universally composable security [Can01], we

cannot construct such a protocol in the plain model [CF01,
CKL03]. Thus, Canetti et al. constructed their protocol in a
relaxed framework called UC security with super-polynomial-
time helpers [CLP10].

executed with it. (In contrast, with a non-malleable
commitment scheme, we have general secure MPC pro-
tocols only in the stand-alone setting.) CCA-secure
commitment schemes are also of independent interest.
Like CCA security for encryption schemes, CCA secu-
rity for commitment schemes is a natural and desirable
security notion. In particular, CCA security implies
concurrent non-malleability.
Roughly speaking, CCA-secure commitment schemes

are commitment schemes such that the hiding property
holds even against adversary A that has access to the
committed-value oracle, where the committed-value or-
acle O interacts with A as an honest receiver in many
concurrent sessions of the commit phase, and at the
end of each session, O computes the committed value
of this session by brute force and returns it to A.
Canetti et al. [CLP10] showed that for any constant

ε > 0, there exists anO(nε)-round CCA secure commit-
ment scheme based on the minimum assumption of the
existence of one-way functions. Recently, Lin and Pass
[LP12] constructed another CCA secure commitment
scheme with the same asymptotic round complexity
from the same assumption2. Both schemes are based
on the concurrent non-malleable commitment scheme
of [LPV08].
A natural question is whether we can construct round-

efficient CCA-secure commitment schemes. In partic-
ular, since there exist constant-round concurrent non-
malleable commitment schemes based on the existence
of one-way functions [Goy11, LP11], an important ques-
tion is the following.

Is it possible to construct constant-round CCA-
secure commitment schemes based on the
existence of one-way functions (or other stan-
dard assumptions)?

2 The advantage of the scheme of [LP12] is that it uses the un-
derlying one-way functions only in a black-box way, i.e., only
through their input/output interfaces.

1



1.2 Our Result

In this paper, we show that it is impossible to con-
struct constant-round CCA-secure commitment schemes
based on standard assumptions if we use standard tech-
niques to prove the security. More precisely, we prove
the following theorem.

Theorem 1. Let 〈C,R〉 be a o(log n/ log logn)-round
commitment scheme. If there exists a black-box reduc-
tion showing CCA security of 〈C,R〉 based on a falsi-
fiable polynomial-time hardness assumption, then this
assumption is false.

Below, we explain black-box reductions and falsifi-
able polynomial-time hardness assumptions.

Black-Box Reductions

Black-box reduction R is a probabilistic polynomial-
time (PPT) interactive Turing machine (ITM). We say
that R shows the security of a protocol based on an
assumption if for any adversary A that breaks the se-
curity of the protocol, RA breaks the assumption.

Almost all proofs in cryptography use black-box re-
ductions. An exception is Barak’s non-black-box tech-
nique [Bar01] that uses the code of the adversary to
construct the simulator of his zero-knowledge argument.
(Very recently, Bitansky and Paneth [BP12] showed a
new non-black-box technique, which is based on the im-
possibility of program obfuscation.) However, the use
of his technique is currently limited to a few areas.

Remark 1. We note that our result holds even if con-
structions are non-black-box. That is, even if we use the
code of the underlying primitive (typically for NP re-
ductions in the general zero-knowledge proof), we can-
not construct constant-round CCA-secure commitment
schemes (when we use black-box reductions and falsifi-
able polynomial-time hardness assumptions).

Falsifiable Polynomial-Time Hardness Assump-
tions

A falsifiable polynomial-time hardness assumption
[Nao03, GW11] is defined by using a threshold c and an
interactive game between a PPT ITM (or challenger)
Ch and a PPT adversary A. We say that A breaks
the assumption if the probability that Ch outputs 1
after interacting with A is non-negligibly higher than
the threshold c. The assumption is true if and only if
no PPT A breaks the assumption.

All standard assumptions are falsifiable polynomial-
time hardness assumptions. For example, the existence
of one-way functions and the hardness of factoring are
ones with threshold c = 0, and the decisional Diffie-
Hellman (DDH) assumption is one with threshold c =
1/2.

1.3 Proof Overview

We briefly explain our proof of Theorem 1.
Assume that there exists a black-box reduction R

showing CCA security of 〈C,R〉 based on a falsifiable
polynomial-time hardness assumption. Then, for any

(possibly super-polynomial-time3) adversary A, if A
breaks CCA security of 〈C,R〉, then RA breaks the
assumption.
To show that the assumption is false, we construct a

PPT adversary that breaks the assumption. In particu-
lar, we show that R can break the assumption without
accessing any successful adversary A of CCA security.
Toward this end, we construct a super-polynomial-

time adversary A1 such that (1) A1 breaks CCA se-
curity of 〈C,R〉 but (2) R cannot get any “useful in-
formation” from oracle access to A1. Recall that ad-
versaries against CCA security are given access to the
committed-value oracle O and try to break the hiding
property of 〈C,R〉. Then, A1 does the following.

1. First, A1 interacts with O as follows. A1 con-
currently commits to many random values and
receives answers from O. If one of these answers
is not equal to the value that A1 committed to,
A1 outputs abort and halts.

2. Then, A1 breaks the hiding property of 〈C,R〉 by
brute force.

Since R has only black-box access to A1, the only way
for R to get useful information from A1 is to interact
with A1 and receive the Step 2 messages. (Since the
Step 1 messages are commitments to random values,
they are useless to R, i.e., they can be simulated in
polynomial time.) In other words, to get useful infor-
mation, R needs to extract the committed values and
return them to A1 in Step 1 (otherwise, A1 halts before
Step 2). Since the running time of R is polynomial, the
hiding property of 〈C,R〉 implies that the only way for
R to extract these committed values is to rewind A1

in each session of the commitment. (Since the running
time of the challenger Ch is also polynomial, the mes-
sages that R receives from Ch are useless for extract-
ing the committed values.) However, since A1 com-
mits to the values concurrently, there exists the prob-
lem of recursive rewinding (i.e., when R rewinds A1

in a session, it requires a rewinding of another session,
which in turn requires a rewinding of another session,
and so on), which occurs in the context of concurrent
zero-knowledge proofs [DNS04] as well. Then, we use
a result in the impossibility of o(logn/ log log n)-round
black-box concurrent zero-knowledge proofs [CKPR02]
to show that whenever the running time ofR is polyno-
mial, there exists a session in which R cannot rewind
A1. Thus, R cannot extract the committed value of
this session, and therefore cannot get useful informa-
tion from A1.
Using A1, we show that the underlying assumption

is false as follows. Since R is a black-box reduction
showing CCA security of 〈C,R〉, and since A1 breaks

CCA security of 〈C,R〉, RA1

breaks the assumption.
Then, since R does not get any useful information from
A1, we can show that R can break the assumption

3 Since R has only oracle access to A, the running time of A
does not make any difference in the behavior of R.

2



without accessing A1. Then, since the running time of
R is polynomial, we conclude that the assumption is
false.

2 Preliminary

In this paper, we say that the round complexity of a
protocol is k(n) if each party sends k(n) messages.

2.1 CCA-Secure Commitment

First, we recall the definition of CCA-secure com-
mitments [CLP10, LP12]. In the following, we use
tag-based commitment schemes to denote commitment
schemes such that both the committer and the receiver
receive a string called a tag as an additional input.

Roughly speaking, a tag-based commitment scheme
〈C,R〉 is CCA-secure if the hiding property of 〈C,R〉
holds even against adversary A that can interact with
the committed-value oracle during the interaction with
the committer. The committed-value oracle O inter-
acts with A as an honest receiver in many concurrent
sessions of the commit phase of 〈C,R〉 using tags cho-
sen adaptively by A. At the end of each session, if the
commitment of this session is invalid or has multiple
committed values, O returns ⊥ to A. Otherwise, O
returns the unique committed value to A.

More precisely, let us consider the following prob-
abilistic experiment indb(〈C,R〉,A, n, z) for each b ∈
{0, 1}. On input 1n and auxiliary input z, adversary
AO adaptively chooses a pair of challenge values v0, v1 ∈
{0, 1}n and an n-bit tag id ∈ {0, 1}n. Then, AO re-
ceives a commitment to vb with tag id, and A out-
puts y. The output of the experiment is ⊥ if during
the experiment, A sends O any commitment using tag
id. Otherwise, the output of the experiment is y. Let
INDb(〈C,R〉,A, n, z) denote the output of experiment
indb(〈C,R〉,A, n, z).

Then, CCA security of 〈C,R〉 is defined as follows.

Definition 1. Let 〈C,R〉 be a tag-based commitment
scheme and O be the committed-value oracle of 〈C,R〉.
Then, 〈C,R〉 is CCA-secure (w.r.t the committed-value
oracle) if for any PPT adversary A, the following are
computationally indistinguishable:

• {IND0(〈C,R〉,A, n, z)}n∈N,z∈{0,1}∗

• {IND1(〈C,R〉,A, n, z)}n∈N,z∈{0,1}∗

In the following, we use left session to denote the
session of the commit phase between the committer
and A, and use right sessions to denote the sessions
between A and O.

2.2 Falsifiable Polynomial-Time Hardness As-
sumption

Next, we give a definition of the falsifiable polynomial-
time hardness assumptions, which is essentially the same
as the definition of the falsifiable assumptions of [GW11].

Definition 2. A falsifiable polynomial-time hardness
assumption is a pair (Ch, c), where Ch is a PPT ITM
called a challenger and c is a constant such that 0 ≤ c <
1. For any (possibly super-polynomial-time) adversary
A, we say that A breaks an assumption (Ch, c) if there
exists a polynomial p(·) such that for infinitely many
n, we have

Pr [outputCh[〈Ch,A〉(1n)] = 1] ≥ c+ 1/p(n) .

The assumption (Ch, c) is true if and only if no PPT
adversary can break (Ch, c).

2.3 Black-Box Reduction

Finally, we recall the definition of black-box reduc-
tions from [GW11]. For concreteness, we consider only
black-box reductions showing CCA security of a com-
mitment scheme.

Definition 3. A black-box reduction is a PPT oracle
machine. We say that a black-box reduction R shows
CCA security of a commitment scheme 〈C,R〉 based
on an assumption (Ch, c) if for any (possibly super-
polynomial-time) adversary A that breaks CCA secu-
rity of 〈C,R〉, RA breaks the assumption (Ch, c).

3 Proof of Theorem 1

In the proof of Theorem 1, we use a technique that
Canetti et al.[CKPR02] used to show the impossibility
of o(logn/ log log n)-round black-box concurrent zero-
knowledge proofs for non-trivial languages.
First, we recall this technique (for details, see [CKPR02]

and Appendix A). For any k(n) = o(log n/ log log n)-
round zero-knowledge proof 〈P, V 〉 and for any PPT
black-box simulator S, Canetti et al. constructed a
family of cheating verifiers {Vg,h}g∈G,h∈H , whereG and
H are families of hash functions. Each Vg,h executes
n2 sessions of 〈P, V 〉 in a specific schedule Rn2 (see Fig-
ure 1). The schedule Rn2 consists of n recursive blocks,
and each recursive block consists of n sessions. In each
session, Vg,h interacts with the prover in the same way
as the honest verifier does except that (1) randomness
used in this session is determined by using h and a pre-
fix of the transcript (called the block prefix ) and (2)
Vg,h decides whether to abort this session by using g
and a prefix of the transcript (called the iteration pre-
fix )4. Vg,h accepts a recursive block if and only if Vg,h

accepted at least n1/2/4 sessions in this recursive block.
If Vg,h rejects a recursive block, Vg,h halts. If Vg,h ac-
cepts all n recursive blocks, Vg,h outputs accept. Then,
Canetti et al. showed that with overwhelming proba-
bility over the choice of g ∈ G, h ∈ H, and randomness
of S, if SVg,h outputs an accepted transcript (i.e., a

4 Roughly speaking, the block prefix is defined so that whenever
S rewinds Vg,h in a recursive block, the randomness used in
higher-level recursive blocks is completely changed (and thus
S needs to rewind Vg,h in these recursive blocks as well), and
the iteration prefix is defined so that whenever S rewinds Vg,h

in a session, Vg,h aborts this session with a fixed probability
(and thus S needs to rewind Vg,h many times until S gets an
accepted transcript of this session).

3



For any m ≤ n2, the schedule Rm is recursively de-
fined as follows.

1. If m < n, sessions 1, . . . ,m are executed se-
quentially until they are all completed.

2. Otherwise, for j = 1, . . . , k(n):

Message exchange: Each of the first n ses-
sions exchanges two messages.

Recursive call: If j < k(n), the scheduling
Rd(m−n)/(k(n)−1)e is applied recursively
on d(m− n)/(k(n)− 1)e new sessions.

The set of n sessions that is explicitly executed dur-
ing the message exchange phase is called a recursive
block.

Figure 1: Schedule Rm [CKPR02].

transcript in which Vg,h outputs accept), there exists a
session that was accepted but was not “rewound” in the
execution of SVg,h (since otherwise the running time of
S becomes super-polynomial).5

Next, we prove Theorem 1. In the proof, we use the
idea behind {Vg,h}g∈G,h∈H .

Proof (of Theorem 1). Let R be a black-box reduction
showing CCA security of 〈C,R〉 based on a falsifiable
polynomial-time hardness assumption (Ch, c). Then,
for any (possibly super-polynomial-time) adversary A
that breaks CCA security of 〈C,R〉, there exists a poly-
nomial p(·) such that for infinitely many n, we have

Pr
[
outputCh[〈Ch,RA〉(1n)] = 1

]
≥ c+ 1/p(n) .

First, let us consider the following family {A1
g,h}g∈G,h∈H

of super-polynomial-time adversaries against CCA se-
curity of 〈C,R〉. In the left session, A1

g,h honestly in-
teracts with the left committer with randomly chosen
challenge values. In the right sessions, A1

g,h interacts

with O in n2 sessions in the schedule Rn2 . In the i-th
right session, A1

g,h chooses random vi ∈ {0, 1}n and
commits to vi. The randomness used in this session is
generated as in [CKPR02] (i.e., using h and the block
prefix) and A1

g,h decides whether to abort this session
as in [CKPR02] (i.e., using g and the iteration prefix).
A1

g,h accepts the i-th session if and only if O returns

vi at the end of this session. A1
g,h accepts a recursive

block if and only if A1
g,h accepted at least n1/2/4 ses-

sions in this recursive block. If A1
g,h rejects a recursive

block, A1
g,h halts. If A1

g,h accepts all n recursive blocks,

A1
g,h computes the committed value v in the left ses-

sion by brute force and outputs v. (Thus, A1
g,h breaks

CCA security of 〈C,R〉.)
Next, let us consider the following family {A2

g,h} of
PPT adversaries. A2

g,h is the same as A1
g,h except that

5 More precisely, Canetti et al. showed that in the execution of

SVg,h , there exists a useful block prefix.

if A2
g,h accepts all n blocks, A2

g,h outputs a random
string v.
Then, we show that with overwhelming probability

over the choice of g and h, the following are computa-
tionally indistinguishable:

• {outputCh[〈Ch,RA1
g,h〉(1n)]}n∈N

• {outputCh[〈Ch,RA2
g,h〉(1n)]}n∈N

Since A1
g,h and A2

g,h differ only in the last message v,
we can show the indistinguishability by showing that in

the interaction with Ch, RA1
g,h does not receive v from

A1
g,h. Assume for contradiction that RA1

g,h receives v

from A1
g,h. Then, since A1

g,h outputs v only if A1
g,h ac-

cepts all n recursive blocks, and since the running time
of Ch and that of R are polynomial, as in [CKPR02],
we can show that there exists a session that was ac-
cepted but was not rewound (we also use the fact that
〈C,R〉 is o(logn/ log log n) round). Then, since A1

g,h

accepts a session only if A1
g,h received the committed

value of this session, R must have sent the committed
value of this session to A1

g,h without rewinding A1
g,h.

Since the running time of Ch and that of R are poly-
nomial, this contradicts the hiding property of 〈C,R〉
(i.e., we can use Ch andR to break the hiding property
of 〈C,R〉). We thus conclude that R does not receive
v from A1

g,h, and therefore we conclude that the indis-
tinguishability holds.
For every g ∈ G and h ∈ H, since A1

g,h breaks CCA
security of 〈C,R〉, there exists a polynomial p(·) such
that for infinitely many n, we have

Pr
[
outputCh[〈Ch,RA1

g,h〉(1n)] = 1
]
≥ c+ 1/p(n) .

Then, from the above indistinguishability, for random
g ∈ G and h ∈ H, we have

Pr
[
outputCh[〈Ch,RA2

g,h〉(1n)] = 1
]

≥ c+ 1/p(n)− negl(n)

≥ c+ 1/poly(n)

with overwhelming probability over the choice of g and
h. Since the running time of R and that of A2

g,h are
polynomial, this fact implies that the assumption (Ch, c)
is false.

4 Conclusion

In this paper, we showed that if we use black-box
reductions to prove CCA security, we cannot construct
o(logn/ log log n)-round CCA secure commitment schemes
based on falsifiable polynomial-time hardness assump-
tions. We note that in [KMO12], the authors proposed
a constant-round CCA-secure commitment scheme based
on the existence of one-way functions that are secure
against sub-exponential-time adversaries. This scheme
gets around the result of this paper by using a sub-
exponential-time hardness assumption.

4



References

[Bar01] Boaz Barak. How to go beyond the black-
box simulation barrier. In FOCS, pages
106–115. IEEE Computer Society, 2001.

[BP12] Nir Bitansky and Omer Paneth. From the
impossibility of obfuscation to a new non-
black-box simulation technique. In FOCS.
IEEE Computer Society, 2012.

[Can01] Ran Canetti. Universally composable se-
curity: A new paradigm for cryptographic
protocols. In FOCS, pages 136–145. IEEE
Computer Society, 2001.

[CF01] Ran Canetti and Marc Fischlin. Universally
composable commitments. In Joe Kilian,
editor, CRYPTO, volume 2139 of Lecture
Notes in Computer Science, pages 19–40.
Springer, 2001.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda
Lindell. On the limitations of universally
composable two-party computation with-
out set-up assumptions. In Eli Biham, edi-
tor, EUROCRYPT, volume 2656 of Lecture
Notes in Computer Science, pages 68–86.
Springer, 2003.

[CKPR02] Ran Canetti, Joe Kilian, Erez Petrank,
and Alon Rosen. Black-box concurrent
zero-knowledge requires (almost) logarith-
mically many rounds. SIAM J. Comput.,
32(1):1–47, 2002.

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass.
Adaptive hardness and composable security
in the plain model from standard assump-
tions. In FOCS, pages 541–550. IEEE Com-
puter Society, 2010.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni
Naor. Nonmalleable cryptography. SIAM
J. Comput., 30(2):391–437, 2000.

[DNS04] Cynthia Dwork, Moni Naor, and Amit Sa-
hai. Concurrent zero-knowledge. J. ACM,
51(6):851–898, 2004.

[Goy11] Vipul Goyal. Constant round non-malleable
protocols using one way functions. In
Lance Fortnow and Salil P. Vadhan, editors,
STOC, pages 695–704. ACM, 2011.

[GW11] Craig Gentry and Daniel Wichs. Separating
succinct non-interactive arguments from all
falsifiable assumptions. In Lance Fortnow
and Salil P. Vadhan, editors, STOC, pages
99–108. ACM, 2011.

[KMO12] Susumu Kiyoshima, Yoshifumi Manabe,
and Tatsuaki Okamoto. Constant-round
black-box construction of composable pro-
tocols. Unpublished manuscript, 2012.

[KOS03] Jonathan Katz, Rafail Ostrovsky, and
Adam Smith. Round efficiency of multi-
party computation with a dishonest major-
ity. In Eli Biham, editor, EUROCRYPT,
volume 2656 of Lecture Notes in Computer
Science, pages 578–595. Springer, 2003.

[LP11] Huijia Lin and Rafael Pass. Constant-round
non-malleable commitments from any one-
way function. In Lance Fortnow and Salil P.
Vadhan, editors, STOC, pages 705–714.
ACM, 2011.

[LP12] Huijia Lin and Rafael Pass. Black-box con-
structions of composable protocols without
set-up. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO, volume 7417 of
Lecture Notes in Computer Science, pages
461–478. Springer, 2012.

[LPV08] Huijia Lin, Rafael Pass, and Muthuramakr-
ishnan Venkitasubramaniam. Concurrent
non-malleable commitments from any one-
way function. In Ran Canetti, editor, TCC,
volume 4948 of Lecture Notes in Computer
Science, pages 571–588. Springer, 2008.

[LPV09] Huijia Lin, Rafael Pass, and Muthuramakr-
ishnan Venkitasubramaniam. A unified
framework for concurrent security: uni-
versal composability from stand-alone non-
malleability. In Michael Mitzenmacher, ed-
itor, STOC, pages 179–188. ACM, 2009.

[Nao03] Moni Naor. On cryptographic assump-
tions and challenges. In Dan Boneh, editor,
CRYPTO, volume 2729 of Lecture Notes in
Computer Science, pages 96–109. Springer,
2003.

[Pas04] Rafael Pass. Bounded-concurrent secure
multi-party computation with a dishonest
majority. In László Babai, editor, STOC,
pages 232–241. ACM, 2004.

[PR05] Rafael Pass and Alon Rosen. Concur-
rent non-malleable commitments. In FOCS,
pages 563–572. IEEE Computer Society,
2005.

[Ros06] Alon Rosen. Concurrent Zero-Knowledge.
Springer-Verlag New York Inc, 2006.

A Details of Vg,h [CKPR02]

In this section, we explain Vg,h in [CKPR02] in a
little more detail. (Some of the following text is taken
from [Ros06].) Let 〈P, V 〉 be a zero-knowledge proof for
language L with round-complexity k(n) = o(logn/ log logn),
and S be a black-box concurrent simulator for 〈P, V 〉
with polynomial running time tS(·). (Queries of S are

5



partial execution transcripts ending with prover mes-
sages, which are answered by the next cheating veri-
fier’s messages.) Let G be a family of tS(n)-wise in-
dependent hash functions mapping a poly(n)-bit long
string into a single bit so that for every α ∈ {0, 1}poly(n)
we have

Pr
[
g(α) = 1 | g U←− G

]
= n−1/2n ,

andH be a family of tS(n)-wise independent hash func-
tions mapping a poly(n)-bit long string to a ρV (n)-
bit string so that for every α ∈ {0, 1}poly(n) and β ∈
{0, 1}ρV (n) we have

Pr
[
h(α) = β | h U←− H

]
= 2−ρV (n)

(where ρV (n) is the number of random bits used by an
honest verifier V on an input x ∈ {0, 1}n).

A.1 An Informal Description of Vg,h

Vg,h executes n2 sessions of 〈P, V 〉 in a specific sched-
ule Rn2 (see Figure 1). The schedule Rn2 consists of
n recursive blocks, and each recursive block consists
of n sessions. Thus, each session s is uniquely deter-
mined by identity (`, i) ∈ {1, . . . , n}×{1, . . . , n}, where
` = `(s) is the index of the recursive block to which s
belongs and i = i(s) is the index of s within the n
sessions that belong to the `-th recursive block.

Definition 4 (Identifiers of next message). The sched-
ule defines a mapping from partial execution transcripts
ending with a prover message to the identifiers of the
next verifier message, i.e., the session and round num-
ber to which the next verifier message belongs. Recall
that such partial execution transcripts correspond to
queries of a black-box simulator and so the mapping
defines the identifier of the answer. For such a query q,
we denote by πsn(q) = (`, i) ∈ {1, . . . , n} × {1, . . . , n}
the session to which the next verifier message belongs,
and by πmsg(q) = j ∈ {1, . . . , k(n)} its index within the
verifier’s messages in this session.

In each session, Vg,h interacts with a prover in the
same way as the honest verifier does except that (1)
randomness used in this session is determined by using
h and a prefix of the transcript (called the block prefix )
and (2) Vg,h decides whether to abort this session by
using g and a prefix of the transcript (called the iter-
ation prefix ), where the block prefix and the iteration
prefix are defined below.

Definition 5 (Block prefix). The block prefix of a
query q satisfying πsn(q) = (`, i) is the prefix of q
that is answered with the first verifier message of ses-
sion (`, 1), i.e., the first main session in block `. More
formally, bp(q) = (b1, a1, . . . , bγ , aγ) is the block pre-
fix of q = (b1, a1, . . . , bt, at) if πsn(bp(q)) = (`, 1) and
πmsg(bp(q)) = 1. The block prefix will be said to cor-
respond to recursive block `.

Definition 6 (Iteration prefix). The iteration prefix of
a query q satisfying πsn(q) = (`, i) and πmsg(q) = j > 1
is the prefix of q that ends with the (j − 1)-st prover
message in session (`, n), i.e, the n-th main session in
black `. More formally, ip(q) = (b1, a1, . . . , bδ, aδ) is
the iteration prefix of q = (b1, a1, . . . , bt, at) if aδ is

of the form p
(n)
j−1, where p

(n)
j−1 denotes the (j − 1)-st

prover message in the n-th main session of block `.
This iteration prefix is said to correspond to the block
prefix of q.

Vg,h accepts a recursive block if and only if Vg,h ac-
cepted at least n1/2/4 sessions in this recursive block.
If Vg,h rejects a recursive block, Vg,h halts. If Vg,h ac-
cepts all n recursive blocks, Vg,h outputs accept.

A.2 A Formal Description of Vg,h

On query q = (b1, a1, . . . , at−1, bt, at), the verifier
Vg,h acts as follows. (Without loss of generality, we as-
sume that at the beginning of 〈P, V 〉, the verifier sends
a fixed initiation message.)

1. First, Vg,h checks if the execution transcript given
by the query is legal (i.e., corresponds to a pos-
sible execution prefix), and halts with a special
error message if the query is not legal.

2. If at is the form p
(n)
k(n) (i.e., in case query q ends

with the last prover message of the n-th main ses-
sion of a recursive block), Vg,h checks whether the

transcript q = (b1, a1, . . . , bt, p
(n)
k(n)) contains the

accepting conversations of at least n1/2/4 main
sessions in the block that has just been com-
pleted. In case it does not, Vg,h halts with a
special error message.

3. Next, Vg,h determines the block prefix bp(q) =
(b1, a1, . . . , bγ , aγ) of query q. It also determines
the identifiers of the next-message (`, i) = πsn(q)
and j = πmsg(q), the iteration prefix ip(q) =

(b1, a1, . . . , bδ, p
(n)
j−1), and the j − 1 prover mes-

sages of session i appearing in query q, which we

denote by p
(i)
1 , . . . , p

(i)
j−1.

4. If j = 1, then Vg,h answers with the verifier’s
fixed initiation message for session i.

5. If j > 1, then Vg,h determines bi,j = g(i, ip(q)).

(a) If bi,j = 0, then Vg,h sets v
(i)
j = abort.

(b) If bi,j = 1, then Vg,h determines ri = h(i, bp(q))

and computes the message v
(i)
j = V (x, ri; p

(i)
1 , . . . , p

(i)
j−1)

that would have been sent by the honest ver-
ifier on common input x, random tape ri,

and prover’s messages p
(i)
1 , . . . , p

(i)
j−1.

(c) Finally, Vg,h answers with v
(i)
j .

6


